Solutions to Assignment \#3

1. Solve the initial value problem

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=t^{2} \\
y(0)=2
\end{array}\right.
$$

Solution: Compute

$$
y(t)=2+\int_{0}^{t} \tau^{2} d \tau=2+\frac{t^{3}}{3}, \quad \text { for all } t \in \mathbb{R}
$$

2. Solve the initial value problem

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=\sqrt{t} \\
y(1)=0
\end{array}\right.
$$

Solution: Compute

$$
\begin{aligned}
y(t) & =\int_{1}^{t} \sqrt{\tau} d \tau \\
& =\left[\frac{\tau^{3 / 2}}{3 / 2}\right]_{1}^{t} \\
& =\frac{2}{3} t^{3 / 2}-\frac{2}{3}
\end{aligned}
$$

for $t \geqslant 0$.
3. Let $y=y(t)$ denote the solution to the initial value problem

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=\frac{1}{1+t^{4}} \\
y(0)=0
\end{array}\right.
$$

(a) Use

$$
y(t)=y_{o}+\int_{t_{o}}^{t} f(\tau) d \tau, \quad \text { for all } t \in I
$$

to write down a formula for computing $y(t)$.
Solution:

$$
\begin{equation*}
y(t)=\int_{0}^{t} \frac{1}{1+\tau^{4}} d \tau, \quad \text { for all } t \in \mathbb{R} \tag{1}
\end{equation*}
$$

(b) Compute $y^{\prime}(t)$ and $y^{\prime \prime}(t)$.

Solution: It follows from (1) and the Fundamental Theorem of Calculus that

$$
\begin{equation*}
y^{\prime}(t)=\frac{1}{1+t^{4}}, \quad \text { for all } t \in \mathbb{R} \tag{2}
\end{equation*}
$$

Differentiating $y^{\prime}(t)$ with respect to t we obtain, by the Chain Rule, that

$$
\begin{equation*}
y^{\prime \prime}(t)=-\frac{4 t^{3}}{\left(1+t^{4}\right)^{2}}, \quad \text { for all } t \in \mathbb{R} \tag{3}
\end{equation*}
$$

Figure 1: Sketch of graph of $y=y(t)$
(c) Determine intervals on which (i) $y(t)$ increases, (ii) $y(t)$ decreases, (iii) the graph of $y=y(t)$ is concave up, and (iv) the graph of $y=y(t)$ is concave down.

Solution: It follows from (2) that $y^{\prime}(t)>0$ for all values of t, so that $y(t)$ increases as t increases for all $t \in \mathbb{R}$.
Using (3) we see that $y^{\prime \prime}(t)<0$ for positive values of t and $y^{\prime \prime}(t)>$ 0 for negative values of t. Thus, the graph of $y=y(t)$ is concave down for $t>0$ and concave up for $t<0$.
(d) Sketch the graph of $y=y(t)$.

Solution: Putting together the qualitative information obtained in part (c), we obtain the graph shown in Figure 1. Observe that the graph has an inflection point at $(0,0)$.
4. Let $f(t)= \begin{cases}\frac{\sin t}{t} & \text { if } t \neq 0 \\ 1 & \text { if } t=0 .\end{cases}$
(a) Explain why f is continuous at 0 .

Solution: Using the limit

$$
\lim _{t \rightarrow 0} \frac{\sin t}{t}=1
$$

we see that $\lim _{t \rightarrow 0} f(t)=f(0)$, so that f is continuous at 0 .
(b) Use the fundamental Theorem of Calculus to write an expression for the solution to the initial value problem

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=f(t) \\
y(0)=0
\end{array}\right.
$$

Solution: $y(t)=\int_{0}^{t} \frac{\sin \tau}{\tau} d \tau$ for all $t \in \mathbb{R}$.
5. Define

$$
F(t)=\int_{0}^{t^{2}} \frac{\sin (\tau)}{\tau} d \tau, \quad \text { for } t \in \mathbb{R}
$$

Use the Fundamental Theorem of Calculus and the Chain Rule to compute $F^{\prime}(t)$.

Solution: Put $G(t)=\int_{0}^{t} \frac{\sin (\tau)}{\tau} d \tau$, for $t \in \mathbb{R}$. Then,

$$
F(t)=G\left(t^{2}\right), \quad \text { for all } t \in \mathbb{R}
$$

By the Chain Rule we have that

$$
\begin{equation*}
F^{\prime}(t)=2 t G^{\prime}\left(t^{2}\right), \quad \text { for all } t \in \mathbb{R} \tag{4}
\end{equation*}
$$

where, by virtue of the Fundamental Theorem of Calculus,

$$
\begin{equation*}
G^{\prime}(t)=\frac{\sin (t)}{t}, \quad \text { for all } t \in \mathbb{R} \tag{5}
\end{equation*}
$$

Combining equations (4) and (5) we obtain that

$$
F^{\prime}(t)=2 t \frac{\sin \left(t^{2}\right)}{t^{2}}, \quad \text { for } t \in \mathbb{R}
$$

or

$$
F^{\prime}(t)=2 \frac{\sin \left(t^{2}\right)}{t}, \quad \text { for } t \in \mathbb{R}
$$

