Solutions to Assignment \#4

1. Solve the initial value problem

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=t \sin \left(t^{2}\right) \\
y(0)=0
\end{array}\right.
$$

for $t \in \mathbb{R}$.
Solution: Compute

$$
y(t)=\int_{0}^{t} \tau \sin \left(\tau^{2}\right) d \tau
$$

by making the change of variable $u=\tau^{2}$; so that, $d u=2 \tau d \tau$ and

$$
\begin{aligned}
y(t) & =\frac{1}{2} \int_{0}^{t^{2}} \sin (u) d u \\
& =\frac{1}{2}[-\cos (u)]_{0}^{t^{2}} \\
& =\frac{1}{2}\left[1-\cos \left(t^{2}\right)\right] .
\end{aligned}
$$

2. Solve the initial value problem

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=\frac{\cos (\pi+\sqrt{t})}{\sqrt{t}} \\
y\left(\pi^{2}\right)=1
\end{array}\right.
$$

for $t \geqslant 0$.
Solution: Compute

$$
y(t)=1+\int_{\pi^{2}}^{t} \frac{\cos (\pi+\sqrt{\tau})}{\sqrt{\tau}} d \tau
$$

by making the change of variable $u=\pi+\sqrt{\tau}$; so that, $d u=\frac{1}{2 \sqrt{\tau}} d \tau$ and

$$
\begin{aligned}
y(t) & =1+2 \int_{2 \pi}^{\pi+\sqrt{t}} \cos u d u \\
& =1+2[\sin u]_{2 \pi}^{\pi+\sqrt{t}} \\
& =1+2 \sin (\pi+\sqrt{t})
\end{aligned}
$$

3. Let the graph of $y=f(t)$ be as sketched in Figure 1 on page 2 and put

Figure 1: Sketch of graph of $y=f(t)$

$$
F(t)=\int_{0}^{t} f(\tau) d \tau, \text { for } t \geqslant 0
$$

(a) Based on the sketch in Figure 1, determine intervals on which (i) $F(t)$ increases, (ii) $F(t)$ decreases, (iii) the graph of $y=F(t)$ is concave up, and (iv) the graph of $y=F(t)$ is concave down.

Solution: By the Fundamental Theorem of Calculus, $F^{\prime}=f$, so that (i) $F(t)$ increases for $t_{1}<t<t_{3}$ and (ii) $F(t)$ decreases for $0<t<t_{1}$ and $t>t_{3}$.
Next, use $F^{\prime \prime}=f^{\prime}$ and the information in the sketch in Figure 1 to conclude that $F^{\prime \prime}>0$ for $0<t<t_{2}$ and $F^{\prime \prime}<0$ for $t>t_{2}$; thus, (iii) the graph of $y=F(t)$ is concave up on the interval $\left(0, t_{2}\right)$ and (iv) concave down for $t>t_{2}$.
(b) Estimate the times at which $F(t)$ is (i) a local maximum, and (ii) (i) a local minimum.

Solution: $F(t)$ has a local minimum at $t=t_{1}$ and a local maximum at $t=t_{3}$.
(c) Locate any inflection points in the graph of $y=F(t)$

Solution: The graph of $y=F(t)$ has an inflection point at $\left(t_{2}, F\left(t_{2}\right)\right)$.
4. Let f and F be as in Problem 3. Use the qualitative information obtained in Problem 3 to sketch the graph of $y=F(t)$.

Solution: A sketch of the graph of $y=F(t)$ is shown in Figure 2.

Figure 2: Sketch of graph of $y=F(t)$
5. Let f and F be as in Problem 3. Given that $t_{2}=2$ and t_{3} is about 3 and $f\left(t_{2}\right)$ is about 0.75 , estimate the maximum value of F over the range of values of t pictured in Figure 1.

Solution: In order to do this problem, we also need to estimate $f(0)$ to be about -1 ; we also estimate t_{1} to be about 1 .
From the result of part (c) of Problem 3, the maximum of F occurs at $t=t_{3}$. Thus,

$$
\max F=F\left(t_{3}\right)
$$

Since $F\left(t_{3}\right)=\int_{0}^{t_{3}} f(\tau) d \tau$, we estimate $F\left(t_{3}\right)$ by the negative of the area of the triangle with vertices $(0.0),(0,1)$ and $\left(t_{1}, 0\right)$ plus the area
of the triangle with vertices $\left(t_{1}, 0\right),\left(t_{2}, 0.75\right)$ and $\left(t_{3}, 0\right)$. We then have that

$$
F\left(t_{3}\right) \approx-\frac{1}{2}+\frac{1}{2} \cdot 2(0.75)=0.25
$$

