Assignment #5

Due on Monday, September 26, 2016

Read Section 4.2, *The Natural Logarithm Function*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 5.5 on *Substitution*, pp. 386–392, in *Calculus for the Life Sciences* by Schreiber, Smith and Getz.

Background and Definitions

The natural logarithm function, $\ln: (0, \infty) \to \mathbf{R}$, is the unique solution to the initial value problem

$$\begin{cases} \frac{dy}{dt} = \frac{1}{t};\\ y(1) = 0, \end{cases}$$

for t > 0, so that

$$\ln(t) = \int_1^t \frac{1}{\tau} d\tau, \quad \text{ for all } t > 0.$$

Using this definition, we derived the follow properties of the natural logarithm function in class.

(i) $\ln(1) = 0;$

(ii) $\ln: (0, \infty) \to \mathbf{R}$ is differentiable and $\ln'(t) = \frac{1}{t}$, for all t > 0;

- (iii) $\ln(ab) = \ln a + \ln b$ for all a, b > 0;
- (iv) $\ln(b^p) = p \ln b$ for all b > 0 and $p \in \mathbf{R}$.

Do the following problems

1. Derive the following additional properties of the natural logarithm function.

(a)
$$\ln\left(\frac{1}{b}\right) = -\ln b$$
, for $b > 0$.
(b) $\ln\left(\frac{a}{b}\right) = \ln a - \ln b$, for $a, b > 0$

- 2. Let $f(t) = \ln \sqrt{1+t^2}$ for all $t \in \mathbf{R}$.
 - (a) Compute f'(t) and f''(t).
 - (b) Determine the intervals on the *t*-axis for which f is increasing or decreasing, and all local extrema; the values of t for which the graph of y = f(t) is concave up, and those for which the graph is concave down; and all the inflection points of the graph of y = f(t).
 - (c) Using the information in the previous part, sketch the graph of y = f(t).
- 3. Let $f(t) = t \ln t$ for t > 0.
 - (a) Compute f'(t) and f''(t).
 - (b) Determine the intervals on the *t*-axis for which f is increasing or decreasing, and all local extrema; the values of t for which the graph of y = f(t) is concave up, and those for which the graph is concave down; and all the inflection points of the graph of y = f(t).

For this problem, you will need the fact that $\ln e = 1$.

(c) Using the limit facts

$$\lim_{t \to 0^+} t \ln t = 0 \qquad \text{and} \qquad \lim_{t \to \infty} t \ln t = \infty,$$

and the information in the previous part, sketch the graph of y = f(t). Sketch the graph of y = f(t).

4. Evaluate the indefinite integral

$$\int \frac{1}{t + \sqrt{t}} dt$$

by making the change of variables $u = \sqrt{t}$.

5. Define $g(t) = t \ln t - t$ for all t > 0. Compute g'(t) and use your result in order to obtain a formula for evaluating the indefinite integral

$$\int \ln u \, du.$$