Assignment \#5

Due on Monday, September 26, 2016
Read Section 4.2, The Natural Logarithm Function, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 5.5 on Substitution, pp. 386-392, in Calculus for the Life Sciences by Schreiber, Smith and Getz.

Background and Definitions

The natural logarithm function, $\ln :(0, \infty) \rightarrow \mathbf{R}$, is the unique solution to the initial value problem

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=\frac{1}{t} \\
y(1)=0
\end{array}\right.
$$

for $t>0$, so that

$$
\ln (t)=\int_{1}^{t} \frac{1}{\tau} d \tau, \quad \text { for all } t>0
$$

Using this definition, we derived the follow properties of the natural logarithm function in class.
(i) $\ln (1)=0$;
(ii) $\ln :(0, \infty) \rightarrow \mathbf{R}$ is differentiable and $\ln ^{\prime}(t)=\frac{1}{t}$, for all $t>0$;
(iii) $\ln (a b)=\ln a+\ln b$ for all $a, b>0$;
(iv) $\ln \left(b^{p}\right)=p \ln b$ for all $b>0$ and $p \in \mathbf{R}$.

Do the following problems

1. Derive the following additional properties of the natural logarithm function.
(a) $\ln \left(\frac{1}{b}\right)=-\ln b$, for $b>0$.
(b) $\ln \left(\frac{a}{b}\right)=\ln a-\ln b$, for $a, b>0$.
2. Let $f(t)=\ln \sqrt{1+t^{2}}$ for all $t \in \mathbf{R}$.
(a) Compute $f^{\prime}(t)$ and $f^{\prime \prime}(t)$.
(b) Determine the intervals on the t-axis for which f is increasing or decreasing, and all local extrema; the values of t for which the graph of $y=f(t)$ is concave up, and those for which the graph is concave down; and all the inflection points of the graph of $y=f(t)$.
(c) Using the information in the previous part, sketch the graph of $y=f(t)$.
3. Let $f(t)=t \ln t$ for $t>0$.
(a) Compute $f^{\prime}(t)$ and $f^{\prime \prime}(t)$.
(b) Determine the intervals on the t-axis for which f is increasing or decreasing, and all local extrema; the values of t for which the graph of $y=f(t)$ is concave up, and those for which the graph is concave down; and all the inflection points of the graph of $y=f(t)$.
For this problem, you will need the fact that $\ln e=1$.
(c) Using the limit facts

$$
\lim _{t \rightarrow 0^{+}} t \ln t=0 \quad \text { and } \quad \lim _{t \rightarrow \infty} t \ln t=\infty
$$

and the information in the previous part, sketch the graph of $y=f(t)$. Sketch the graph of $y=f(t)$.
4. Evaluate the indefinite integral

$$
\int \frac{1}{t+\sqrt{t}} d t
$$

by making the change of variables $u=\sqrt{t}$.
5. Define $g(t)=t \ln t-t$ for all $t>0$. Compute $g^{\prime}(t)$ and use your result in order to obtain a formula for evaluating the indefinite integral

$$
\int \ln u d u
$$

