Solutions to Assignment \#5

Background and Definitions

The natural logarithm function, $\ln :(0, \infty) \rightarrow \mathbb{R}$, is the unique solution to the initial value problem

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=\frac{1}{t} \\
y(1)=0
\end{array}\right.
$$

for $t>0$, so that

$$
\ln (t)=\int_{1}^{t} \frac{1}{\tau} d \tau, \quad \text { for all } t>0
$$

Using this definition, we derived the follow properties of the natural logarithm function in class.
(i) $\ln (1)=0$;
(ii) $\ln :(0, \infty) \rightarrow \mathbb{R}$ is differentiable and $\ln ^{\prime}(t)=\frac{1}{t}$, for all $t>0$;
(iii) $\ln (a b)=\ln a+\ln b$ for all $a, b>0$;
(iv) $\ln \left(b^{p}\right)=p \ln b$ for all $b>0$ and $p \in \mathbb{R}$.

1. Derive the following additional properties of the natural logarithm function.
(a) $\ln \left(\frac{1}{b}\right)=-\ln b$, for $b>0$.

Solution: Write $\frac{1}{b}=b^{-1}$ so that, applying property (iv),

$$
\begin{aligned}
\ln \left(\frac{1}{b}\right) & =\ln \left(b^{-1}\right) \\
& =(-1) \ln (b) \\
& =-\ln b,
\end{aligned}
$$

which was to be shown.
(b) $\ln \left(\frac{a}{b}\right)=\ln a-\ln b$, for $a, b>0$.

Solution: Write $\frac{a}{b}=a \cdot \frac{a}{b}$ so that, applying property (iii)

$$
\begin{aligned}
\ln \left(\frac{a}{b}\right) & =\ln \left(a \cdot \frac{1}{b}\right) \\
& =\ln (a)+\ln \left(\frac{1}{b}\right)
\end{aligned}
$$

and so, using the result of part (a) in this problem,

$$
\ln \left(\frac{a}{b}\right)=\ln (a)-\ln b
$$

which was to be shown.
2. Let $f(t)=\ln \sqrt{1+t^{2}}$ for all $t \in \mathbb{R}$.
(a) Compute $f^{\prime}(t)$ and $f^{\prime \prime}(t)$.

Solution: Write $f(x)=\frac{1}{2} \ln \left(1+t^{2}\right)$ and compute

$$
f^{\prime}(t)=\frac{1}{2} \ln ^{\prime}\left(1+t^{2}\right) \cdot \frac{d}{d t}\left[1+t^{2}\right]
$$

where we have applied the Chain Rule, so that

$$
f^{\prime}(t)=\frac{1}{2} \cdot \frac{1}{1+t^{2}} \cdot(2 t)
$$

or

$$
\begin{equation*}
f^{\prime}(t)=\frac{t}{1+t^{2}}, \quad \text { for all } t \in \mathbb{R} \tag{1}
\end{equation*}
$$

Next, differentiate with respect to t the expression for $f^{\prime}(t)$ in (1), applying the quotient rule, to obtain

$$
\begin{aligned}
f^{\prime \prime}(t) & =\frac{d}{d t}\left[\frac{t}{1+t^{2}}\right] \\
& =\frac{1+t^{2}-t(2 t)}{\left(1+t^{2}\right)^{2}}
\end{aligned}
$$

so that

$$
\begin{equation*}
f^{\prime \prime}(t)=\frac{1-t^{2}}{\left(1+t^{2}\right)^{2}}, \quad \text { for all } t \in \mathbb{R} \tag{2}
\end{equation*}
$$

(b) Determine the intervals on the t-axis for which f is increasing or decreasing, and all local extrema; the values of t for which the graph of $y=f(t)$ is concave up, and those for which the graph is concave down; and all the inflection points of the graph of $y=f(t)$. Sketch the graph of $y=f(t)$.
Solution: From the expression for $f^{\prime}(t)$ in (1) we obtain that $f^{\prime}(t)>0$ for $t>0$ and $f^{\prime}(t)<0$ for $t<0$. This, $f(t)$ increases for $t>0$ and decreases for $t<0$. We conclude from this information that $f(t)$ is a minimum when $t=0$; so that

$$
\min f=f(0)=\ln \sqrt{1}=0
$$

Next, write the expression for $f^{\prime \prime}(t)$ in (2) as

$$
\begin{equation*}
f^{\prime \prime}(t)=\frac{(1+t)(1-t)}{\left(1+t^{2}\right)^{2}}, \quad \text { for all } t \in \mathbb{R} \tag{3}
\end{equation*}
$$

We see from the expression for $f^{\prime \prime}(t)$ in (3) that the sign of $f^{\prime \prime}(t)$ is determined by the signs of the factors, $1+t$ and $1-t$, in the numerator on for the right-hand side in (3). The signs of these factors are displayed in Table 1. The concavity of the graph of $y=f(t)$ is also shown in Table

Table 1: Concavity of the graph of $y=f(t)$

1. From the information in the table, we also conclude that the graph of $y=f(t)$ has inflection points at the points

$$
(-1, \ln \sqrt{2}) \quad \text { and } \quad(-1, \ln \sqrt{2})
$$

A sketch of the graph of $y=f(t)$ is shown in Figure 1.
3. Let $f(t)=t \ln t$ for $t>0$.

Figure 1: Sketch of graph of $y=f(t)$
(a) Compute $f^{\prime}(t)$ and $f^{\prime \prime}(t)$.

Solution: First, apply the product rule to compute

$$
f^{\prime}(t)=\ln t+t \cdot \frac{1}{t}
$$

so that

$$
\begin{equation*}
f^{\prime}(t)=\ln t+1, \quad \text { for } t>0 \tag{4}
\end{equation*}
$$

Differentiating the expression for $f^{\prime}(t)$ in (6) with respect to t yields

$$
\begin{equation*}
f^{\prime \prime}(t)=\frac{1}{t}, \quad \text { for } t>0 \tag{5}
\end{equation*}
$$

(b) Determine the intervals on the t-axis for which f is increasing or decreasing, and all local extrema; the values of t for which the graph of $y=f(t)$ is concave up, and those for which the graph is concave down; and all the inflection points of the graph of $y=f(t)$. Sketch the graph of $y=f(t)$.
Solution: It follows from (7) that the graph of $y=f(t)$ is concave up for all $t>0$.
From (6) we see that $f^{\prime}(t)=0$ when $t=e^{-1}$. Also, $f^{\prime}(t)>0$ for t with

$$
\ln t>-1=\ln \left(e^{-1}\right)
$$

which implies that $t>e^{-1}$ (since \ln is an increasing function). Hence, $f(t)$ increases for $t>e^{-1}$. Similarly, $f(t)$ decreases for $0<t<e^{-1}$. We then have that $f(t)$ has a minimum $t=e^{-1}$.
A sketch of the graph of $y=f(t)$ is shown in Figure 2.

Figure 2: Sketch of graph of $y=f(t)$ in Problem 3
4. Evaluate the indefinite integral

$$
\begin{equation*}
\int \frac{1}{t+\sqrt{t}} d t \tag{6}
\end{equation*}
$$

by making the change of variables $u=\sqrt{t}$.
Solution: Let $u=\sqrt{t}$. Then, $d u=\frac{1}{2 \sqrt{t}} d t$, so that $d t=2 u d u$. Substituting into the integral in (6) we obtain that

$$
\begin{align*}
\int \frac{1}{t+\sqrt{t}} d t & =\int \frac{2 u}{u^{2}+u} d u \\
& =2 \int \frac{1}{u+1} d u \tag{7}
\end{align*}
$$

Making a further change of variables, $v=u+1$, in the last integral in (7) we obtain

$$
\begin{align*}
\int \frac{1}{t+\sqrt{t}} d t & =2 \int \frac{1}{v} d v \tag{8}\\
& =2 \ln |v|+c
\end{align*}
$$

Substituting back in terms of u and t, we obtain from (8) that

$$
\int \frac{1}{t+\sqrt{t}} d t=2 \ln (1+\sqrt{t})+c, \quad \text { for } t>0
$$

5. Define $g(t)=t \ln t-t$ for all $t>0$. Compute $g^{\prime}(t)$ and use your result in order to obtain a formula for evaluating the indefinite integral

$$
\int \ln u d u
$$

Solution: Applying the product rule we obtain

$$
g^{\prime}(t)=\ln t+t \cdot \frac{1}{t}-1=\ln t, \quad \text { for all } t>0
$$

Consequently,

$$
\int \ln u d u=u \ln u-u+c
$$

