Assignment \#6

Due on Friday, September 30, 2016
Read Section 4.2 on The Natural Logarithm Function in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 1.6 on Inverse Functions and Logarithms, pp. 71-81, in Calculus for the Life Sciences by Schreiber, Smith and Getz.

Do the following problems

1. Show that $\int_{1}^{2.5} \frac{1}{\tau} d \tau<1$ by comparing the area under the graph of $y=1 / \tau$ from $\tau=1$ to $\tau=2.5$ with the sum of the areas of circumscribed rectangles of width 0.25 .

Use this result to conclude that $2.5<e$.
2. In class and in the lecture notes we showed that $2<e<3$. Show that

$$
\int_{1}^{2.875} \frac{1}{\tau} d \tau>1
$$

by comparing the area under the graph of $y=1 / \tau$ from $\tau=1$ to $\tau=2.875$ with the areas of inscribed rectangles of width 0.125 . Use the result of this problem and Problem 1 to conclude that $2.5<e<2.875$.
3. (Base 10 Logarithm Function, or Common Logarithm). We say that y is the logarithm to base 10 of t if $10^{y}=t$. We write $y=\log t$. Thus,

$$
y=\log t \quad \text { if and only if } \quad 10^{y}=t
$$

Solve the following equations for x using common logarithms.
(i) $2^{x}=10$;
(ii) $e^{x}=10$;
(iii) $10^{x}=e$; and (iv) $b^{x}=a$,
where a and b are positive real numbers
4. Suppose that $y=\log t$, for some positive real number t. Show that $y=\frac{\ln t}{\ln 10}$.
5. Derive the formula $\ln t=\frac{\log t}{\log e}$, for all $t>0$.

