Assignment #6

Due on Friday, September 30, 2016

Read Section 4.2 on *The Natural Logarithm Function* in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 1.6 on *Inverse Functions and Logarithms*, pp. 71–81, in *Calculus for the Life Sciences* by Schreiber, Smith and Getz.

Do the following problems

1. Show that $\int_{1}^{2.5} \frac{1}{\tau} d\tau < 1$ by comparing the area under the graph of $y = 1/\tau$ from $\tau = 1$ to $\tau = 2.5$ with the sum of the areas of circumscribed rectangles of width 0.25.

Use this result to conclude that 2.5 < e.

2. In class and in the lecture notes we showed that 2 < e < 3. Show that

$$\int_{1}^{2.875} \frac{1}{\tau} d\tau > 1$$

by comparing the area under the graph of $y = 1/\tau$ from $\tau = 1$ to $\tau = 2.875$ with the areas of inscribed rectangles of width 0.125. Use the result of this problem and Problem 1 to conclude that 2.5 < e < 2.875.

3. (Base 10 Logarithm Function, or Common Logarithm). We say that y is the logarithm to base 10 of t if $10^y = t$. We write $y = \log t$. Thus,

 $y = \log t$ if and only if $10^y = t$.

Solve the following equations for x using common logarithms.

(i)
$$2^x = 10;$$

- (ii) $e^x = 10;$
- (iii) $10^x = e$; and (iv) $b^x = a$,

where a and b are positive real numbers

- 4. Suppose that $y = \log t$, for some positive real number t. Show that $y = \frac{\ln t}{\ln 10}$.
- 5. Derive the formula $\ln t = \frac{\log t}{\log e}$, for all t > 0.