Solutions to Assignment \#6

1. Show that $\int_{1}^{2.5} \frac{1}{\tau} d \tau<1$ by comparing the area under the graph of $y=1 / \tau$ from $\tau=1$ to $\tau=2.5$ with the sum of the areas of circumscribed rectangles of width 0.25 .
Use this result to conclude that $2.5<e$.
Solution: The circumscribed rectangles are shown in Figure 1. By comparing

Figure 1: Circumscribed Rectangles for Problem 1
the area of the region under the graph of $t=1 / \tau$ above the t-axis and between the lines $\tau=1$ and $\tau=2.5$ (in other words, $\ln (2.5)$) with the area of the circumscribed rectangles in Figure 1, we see that

$$
\begin{equation*}
\ln (2.5)<\text { area of circumscribed rectangles, } \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
\text { area of circumscribed rectangles } & =\frac{1}{4}\left[1+\frac{1}{5 / 4}+\frac{1}{3 / 2}+\frac{1}{7 / 4}+\frac{1}{2}+\frac{1}{9 / 4}\right] \\
& =\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9} \\
& =\frac{2509}{2520} . \tag{2}
\end{align*}
$$

It follows from (1) and the calculations in (3) that

$$
\ln (2.5)<1,
$$

so that

$$
\begin{equation*}
\ln (2.5)<\ln e \tag{3}
\end{equation*}
$$

Next, use the fact that $\ln (t)$ is an increasing function of t to conclude from (3) that

$$
2.5<e
$$

which was to be shown.
2. In class and in the lecture notes we showed that $2<e<3$. Show that

$$
\int_{1}^{2.875} \frac{1}{\tau} d \tau>1
$$

by comparing the area under the graph of $y=1 / \tau$ from $\tau=1$ to $\tau=2.875$ with the areas of inscribed rectangles of width 0.125 . Use the result of this problem and Problem 1 to conclude that $2.5<e<2.875$.
Solution: The inscribed rectangles are shown in Figure 2. The area of the

Figure 2: Inscribed Rectangles for Problem 2
inscribed rectangles shown in Figure 2 is an underestimate for $\ln (2.875)$ so that

$$
\begin{equation*}
\text { area of inscribed rectangles }<\ln (2.875), \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
\text { area of inscribed rectangles } & =\frac{1}{8}\left[\frac{1}{9 / 8}+\frac{1}{10 / 8}+\cdots+\frac{1}{23 / 8}\right] \\
& \approx 1.01643
\end{aligned}
$$

so that

$$
\begin{equation*}
\text { area of inscribed rectangles }>1 \tag{5}
\end{equation*}
$$

Combining (4) and (5) we see that

$$
1<\ln (2.875)
$$

or

$$
\begin{equation*}
\ln e<\ln (2.875) \tag{6}
\end{equation*}
$$

Thus, since $\ln (t)$ is a strictly increasing function of t, it follows from (6) that

$$
e<2.875
$$

Combining this estimate with the result of Problem 1, we can say that

$$
2.5<e<2.875
$$

3. (Base 10 Logarithm Function, or Common Logarithm). We say that y is the logarithm to base 10 of t if $10^{y}=t$. We write $y=\log t$. Thus,

$$
y=\log t \quad \text { if and only if } \quad 10^{y}=t
$$

Solve the following equations for x using common logarithms.
(i) $2^{x}=10 ;$ (ii) $e^{x}=10 ;$ (iii) $10^{x}=e$; and (iv) $b^{x}=a$,
where a and b are positive real numbers

Solution:

(i) Apply the common logarithm function on both sides of the equation

$$
2^{x}=10
$$

to obtain

$$
\log \left(2^{x}\right)=\log (10)
$$

or

$$
x \log (2)=1
$$

which yields the solution $x=\frac{1}{\log (2)}$.
(ii) Proceed as in (i) to obtain that $x=\frac{1}{\log (e)}$.
(iii) Here, we need to assume that $b \neq 1$; otherwise, the equation has no solutions, unless $a=1$. Apply the common logarithm function on both sides of the equation

$$
10^{x}=e
$$

to obtain

$$
x=\log (e) .
$$

(iv) Apply the common logarithm function on both sides of the equation

$$
b^{x}=a
$$

to obtain

$$
\log \left(b^{x}\right)=\log (a)
$$

or

$$
x \log (b)=\log (a)
$$

which yields the solution $x=\frac{\log (a)}{\log (b)}$.
4. Suppose that $y=\log t$, for some positive real number t. Show that $y=\frac{\ln t}{\ln 10}$. Solution: From $y=\log (t)$ we obtain that

$$
\begin{equation*}
10^{y}=t \tag{7}
\end{equation*}
$$

Apply the natural logarithm function to both sides of the equation in (7) to obtain

$$
\ln \left(10^{y}\right)=\ln (t)
$$

or

$$
y \ln (10)=\ln (t)
$$

from which we get that $y=\frac{\ln (t)}{\ln (10)}$.
5. Derive the formula $\ln t=\frac{\log t}{\log e}$, for all $t>0$.

Solution: Set $y=\ln (t)$; then,

$$
\begin{equation*}
e^{y}=t \tag{8}
\end{equation*}
$$

Apply the common logarithm function to both sides of the equation in (8) to obtain

$$
\log \left(e^{y}\right)=\log (t)
$$

or

$$
y \log (e)=\log (t)
$$

from which we get that $y=\frac{\log (t)}{\log (e)}$, or $\ln t=\frac{\log (t)}{\log (e)}$, since $y=\ln t$.

