Assignment \#7

Due on Wednesday, October 5, 2016
Read Section 4.3 on The Number e in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 4.4 on The Exponential Function in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 1.4 on Exponential Growth, pp. 48-55, in Calculus for the Life Sciences by Schreiber, Smith and Getz.

Background and Definitions

The exponential function, $\exp : \mathbf{R} \rightarrow(0, \infty)$, is the unique solution to the initial value problem

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=y \tag{1}\\
y(0)=1
\end{array}\right.
$$

for $t \in \mathbf{R}$. We therefore have that

$$
\exp ^{\prime}(t)=\exp (t), \quad \text { for all } t \in \mathbf{R}, \quad \exp (0)=1
$$

and \exp is the only solution to the problem in (1).
Do the following problems

1. Show that $\exp (a-b)=\frac{\exp (a)}{\exp (b)}$ for all $a, b \in \mathbf{R}$.
2. Let r and y_{o} denote real numbers and put $g(t)=y_{o} \exp (r t)$ for all $t \in \mathbf{R}$. Show that $y=g(t)$ is the unique solution to the initial value problem

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=r y \tag{2}\\
y(0)=y_{o}
\end{array}\right.
$$

by considering the function

$$
w(t)=\frac{v(t)}{\exp (r t)}, \quad \text { for all } t \in \mathbf{R}
$$

where $v(t)$ is any solution to the initial value problem in (2).
3. Show that

$$
\lim _{t \rightarrow+\infty} \exp (-t)=0
$$

4. Define the function $f: \mathbf{R} \rightarrow \mathbf{R}$ by

$$
f(t)=1-\exp (-t), \quad \text { for all } t \in \mathbf{R} .
$$

(a) Compute $f^{\prime}(t)$ and $f^{\prime \prime}(t)$.
(b) Determine the intervals on the t-axis for which f is increasing or decreasing, and all local extrema; the values of t for which the graph of $y=f(t)$ is concave up, and those for which the graph is concave down; and all the inflection points of the graph of $y=f(t)$. Sketch the graph of $y=f(t)$.
5. Let b denote a positive real number. We may use the exponential and natural logarithm functions to define the function $g(t)=b^{t}$ for all $t \in \mathbf{R}$ as follows

$$
\begin{equation*}
g(t)=\exp (t \ln b), \quad \text { for all } t \in \mathbf{R} . \tag{3}
\end{equation*}
$$

Use the definition of b^{t} in (3) to derive formulas for computing
(i) $\frac{d}{d t}\left[b^{t}\right]$, and
(ii) $\int b^{u} d u$.

