Solutions to Assignment \#7

Background and Definitions

The exponential function, $\exp : \mathbb{R} \rightarrow(0, \infty)$, is the unique solution to the initial value problem

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=y \tag{1}\\
y(0)=1
\end{array}\right.
$$

for $t \in \mathbb{R}$. We therefore have that

$$
\exp ^{\prime}(t)=\exp (t), \quad \text { for all } t \in \mathbb{R}, \quad \exp (0)=1
$$

and \exp is the only solution to the problem in (1).

1. Show that $\exp (a-b)=\frac{\exp (a)}{\exp (b)}$ for all $a, b \in \mathbb{R}$.

Solution: Write $\exp (a)=\exp (a-b+b)$ so that

$$
\begin{equation*}
\exp (a)=\exp (a-b) \cdot \exp (b) \tag{2}
\end{equation*}
$$

Solving for $\exp (a-b)$ in (2) yields the result.
2. Let r and y_{o} denote real numbers and put $g(t)=y_{o} \exp (r t)$ for all $t \in \mathbb{R}$. Show that $y=g(t)$ is the unique solution to the initial value problem

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=r y \tag{3}\\
y(0)=y_{o}
\end{array}\right.
$$

by considering the function

$$
w(t)=\frac{v(t)}{\exp (r t)}, \quad \text { for all } t \in \mathbb{R}
$$

where $v(t)$ is any solution to the initial value problem in (3).
Solution: Let $v=v(t)$ be any solution to the initial value problem in (3); then,

$$
\begin{equation*}
v^{\prime}(t)=r v(t), \quad \text { for all } t \in \mathbb{R}, \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
v(0)=y_{o} \tag{5}
\end{equation*}
$$

Define the function

$$
\begin{equation*}
w(t)=\frac{v(t)}{\exp (r t)}, \quad \text { for all } t \in \mathbb{R} \tag{6}
\end{equation*}
$$

Differentiating the function, w, defined in (6) we obtain, by the quotient rule, that

$$
\begin{equation*}
w^{\prime}(t)=\frac{\exp (r t) v^{\prime}(t)-v(t)[\exp (r t)]^{\prime}}{[\exp (r t)]^{2}}, \quad \text { for all } t \in \mathbb{R} \tag{7}
\end{equation*}
$$

Applying the Chain Rule and using (4), we obtain from (7) that

$$
w^{\prime}(t)=\frac{r \exp (r t) v(t)-v(t) \exp ^{\prime}(r t)[r t]^{\prime}}{[\exp (r t)]^{2}}, \quad \text { for all } t \in \mathbb{R}
$$

or

$$
\begin{equation*}
w^{\prime}(t)=\frac{r \exp (r t) v(t)-v(t) r \exp (r t)}{[\exp (r t)]^{2}}=0, \quad \text { for all } t \in \mathbb{R} \tag{8}
\end{equation*}
$$

It follows from (8) that

$$
\begin{equation*}
w(t)=c, \quad \text { for all } t \in \mathbb{R}, \tag{9}
\end{equation*}
$$

where c is a constant (see your result in Problem 1 of Assignment 1). In order to find out the value of c in (9), use (9) and (6) to evaluate

$$
\begin{equation*}
c=\frac{v(0)}{\exp (0)}=y_{o} \tag{10}
\end{equation*}
$$

where we have also used (5).
Next, use (6), (9) and (10) to obtain

$$
\frac{v(t)}{\exp (r t)}=y_{o}, \quad \text { for all } t \in \mathbb{R}
$$

from which we get

$$
v(t)=y_{o} \exp (r t), \quad \text { for all } t \in \mathbb{R}
$$

so that any solution of (3) must in fact be equal to $y(t)=y_{o} \exp (r t)$ for all $t \in \mathbb{R}$.
3. Show that

$$
\lim _{t \rightarrow+\infty} \exp (-t)=0
$$

Solution: Use the result of Problem 1 to write $\exp (-t)=\exp (0-t)$ as

$$
\begin{equation*}
\exp (-t)=\frac{\exp (0)}{\exp (t)}=\frac{1}{\exp (t)}, \quad \text { for all } t \in \mathbb{R} \tag{11}
\end{equation*}
$$

It follows from (11), and the fact that

$$
\lim _{t \rightarrow+\infty} \exp (t)=+\infty
$$

that

$$
\lim _{t \rightarrow+\infty} \exp (-t)=0
$$

4. Define the function $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(t)=1-\exp (-t), \quad \text { for all } t \in \mathbb{R}
$$

(a) Compute $f^{\prime}(t)$ and $f^{\prime \prime}(t)$.

Solution: Apply the Chain Rule to compute

$$
f^{\prime}(t)=-\exp ^{\prime}(-t) \cdot \frac{d}{d t}[-t]
$$

from which we get

$$
\begin{equation*}
f^{\prime}(t)=\exp (-t), \quad \text { for all } t \in \mathbb{R} \tag{12}
\end{equation*}
$$

Differentiate the expression of $f^{\prime}(t)$ in (12) with respect to t, applying the Chain Rule, to obtain

$$
\begin{equation*}
f^{\prime \prime}(t)=-\exp (-t), \quad \text { for all } t \in \mathbb{R} \tag{13}
\end{equation*}
$$

(b) Determine the intervals on the t-axis for which f is increasing or decreasing, and all local extrema; the values of t for which the graph of $y=f(t)$ is concave up, and those for which the graph is concave down; and all the inflection points of the graph of $y=f(t)$. Sketch the graph of $y=f(t)$.

Figure 1: Sketch of graph of $y=f(t)$

Solution: Since the exponential function is strictly positive, it follows from (12) that $f^{\prime}(t)>0$ for all $t \in \mathbb{R}$; hence, $f(t)$ is strictly increasing for all values of t. By the same token, we obtain from (13) that $f^{\prime \prime}(t)<0$ for all values of t; so that the graph of $y=f(t)$ is concave down for all values of t. We also conclude that f has no extrema, and the graph of $y=f(t)$ has no inflection points. A sketch of the graph of $y=f(t)$ is shown in Figure 1. In the sketch in Figure 1, we have also taken into account the fact that

$$
\lim _{t \rightarrow+\infty}[1-\exp (-t)]=1
$$

as a consequence of the result in Problem 3; so that the line $y=1$ is an asymptote to the graph of $y=f(t)$. Note also

$$
f(t)=1-\exp (-t)<1, \quad \text { for all } t \in \mathbb{R},
$$

since $\exp (-t)>0$ for all $t \in \mathbb{R}$. Finally, we have also used the fact that

$$
f(0)=1-\exp (0)=1-1=0
$$

so that the graph of $y=f(t)$ goes through $(0,0)$.
5. Let b denote a positive real number. We may use the exponential and natural logarithm functions to define the function $g(t)=b^{t}$ for all $t \in \mathbb{R}$ as follows

$$
\begin{equation*}
g(t)=\exp (t \ln b), \quad \text { for all } t \in \mathbb{R} . \tag{14}
\end{equation*}
$$

Use the definition of b^{t} in (14) to derive formulas for computing
(i) $\frac{d}{d t}\left[b^{t}\right]$, and
(ii) $\int b^{u} d u$.

Solution:

(i) Applying the Chain Rule, we obtain from (14) that

$$
\begin{aligned}
g^{\prime}(t) & =\exp ^{\prime}(t \ln b) \cdot \frac{d}{d t}[t \ln b] \\
& =\exp (t \ln b) \cdot \ln b \\
& =(\ln b) b^{t}
\end{aligned}
$$

so that

$$
\begin{equation*}
\frac{d}{d t}\left[b^{t}\right]=(\ln b) b^{t}, \quad \text { for all } t \in \mathbb{R} \tag{15}
\end{equation*}
$$

(ii) Rewriting (15) we obtain

$$
\frac{d}{d t}\left[\frac{1}{\ln b} b^{t}\right]=b^{t}, \quad \text { for all } t \in \mathbb{R}
$$

which yields the integration formula

$$
\int b^{u} d u=\frac{1}{\ln b} b^{u}+C
$$

where C is an arbitrary constant.

