Solutions to Assignment \#8

Background and Definitions

The exponential function, $\exp : \mathbb{R} \rightarrow(0, \infty)$, given by $\exp (t)=e^{t}$, for all $t \in \mathbb{R}$, is the unique solution of the initial value problem

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=y \tag{1}\\
y(0)=1
\end{array}\right.
$$

1. Use the properties of \ln and \exp to compute the exact value of $\ln (\sqrt{e})$. Compare your result with the approximation given by a calculator.
Solution: Compute

$$
\ln (\sqrt{e})=\ln \left[e^{1 / 2}\right]=\frac{1}{2} \ln e=\frac{1}{2}
$$

The approximate value given by a calculator is

$$
\ln (\sqrt{e}) \doteq \ln (\sqrt{2.718281828}) \doteq 0.49999999991556334766449256702875
$$

2. Let $f(t)=t e^{-t^{2}}$ for all $t \in \mathbb{R}$. Compute $f^{\prime}(t)$ and $f^{\prime \prime}(t)$. Determine the intervals on the t-axis for which f is increasing or decreasing, and all local extrema, the values of t for which the graph of f is concave up, and those for which the graph is concave down, and all the inflection points of the graph of f. Sketch the graph of $y=f(t)$.
Solution: First, we compute $f^{\prime}(t)$ by applying the product rule and the Chain Rule to get

$$
f^{\prime}(t)=e^{-t^{2}}+t e^{-t^{2}} \cdot(-2 t), \quad \text { for all } t \in \mathbb{R}
$$

or

$$
\begin{equation*}
f^{\prime}(t)=\left(1-2 t^{2}\right) e^{-t^{2}}, \quad \text { for all } t \in \mathbb{R} \tag{2}
\end{equation*}
$$

which we can factor as

$$
\begin{equation*}
f^{\prime}(t)=2\left(\frac{1}{\sqrt{2}}+t\right)\left(\frac{1}{\sqrt{2}}-t\right) e^{-t^{2}}, \quad \text { for all } t \in \mathbb{R} \tag{3}
\end{equation*}
$$

Since $e^{-t^{2}}>0$ for all t, it follows from (3) that the sign of $f^{\prime}(t)$ is determined by the sign of the factors $\frac{1}{\sqrt{2}}+t$ and $\frac{1}{\sqrt{2}}-t$. Table 1 shows the signs of these factors and the corresponding sign of $f^{\prime}(t)$. We see from Table 1 that

$\frac{1}{\sqrt{2}}+t:$	-	+	+
$\frac{1}{\sqrt{2}}-t:$	+		
$f^{\prime}(t):$	-	$-1 / \sqrt{2}$	
$f(t):$	decreases		
increases			

Table 1: Sign of $f^{\prime}(t)$
$f(t)$ decreases on $(-\infty,-1 / \sqrt{2})$ or $(1 / \sqrt{2},+\infty)$, and increases on the interval $(-1 / \sqrt{2}, 1 / \sqrt{2})$. From this information we also conclude that $f(t)$ is a local minimum when $t=-\sqrt{3} / \sqrt{2}$ and a local maximum when $t=\sqrt{3} / \sqrt{2}$. These extrema are also global extrema and

$$
\min f=f(-1 / \sqrt{2})=-\frac{1}{\sqrt{2}} e^{-1 / 2}=-\frac{\sqrt{2}}{2 e^{1 / 2}}
$$

similarly, we get that

$$
\max f=f(1 / \sqrt{2})=\frac{\sqrt{2}}{2 e^{1 / 2}}
$$

Next, differentiate $f^{\prime}(t)$ in (2) with respect to t to obtain

$$
f^{\prime \prime}(t)=4 t\left(t^{2}-3 / 2\right) e^{-t^{2}}, \quad \text { for all } t \in \mathbb{R}
$$

which factors into

$$
\begin{equation*}
f^{\prime \prime}(t)=4 t\left(t+\frac{\sqrt{3}}{\sqrt{2}}\right)\left(t-\frac{\sqrt{3}}{\sqrt{2}}\right) e^{-t^{2}}, \quad \text { for all } t \in \mathbb{R} \tag{4}
\end{equation*}
$$

Again, since $e^{-t^{2}}>0$ for all $t \in \mathbb{R}$, in view of (4), the sign of $f^{\prime \prime}(t)$ is determined by the signs of the factors $t, t+\frac{\sqrt{3}}{\sqrt{2}}$, and $t-\frac{\sqrt{3}}{\sqrt{2}}$. These are shown in Table 2. Table 2 also shows that the graph of $y=f(t)$ is concave down on the intervals $(-\infty,-\sqrt{3} / \sqrt{2})$ or $(0, \sqrt{3} / \sqrt{2})$, and concave up on the intervals $(-\sqrt{3} / \sqrt{2}, 0)$ or $(\sqrt{3} / \sqrt{2},+\infty)$. We also get that the graph of $y=f(t)$ has inflection points

Table 2: Concavity of the graph of $y=f(t)$

Figure 1: Sketch of graph of $y=t e^{-t^{2}}$
at $-\sqrt{3} / \sqrt{2}, 0$ and $\sqrt{3} / \sqrt{2}$. A sketch of the graph of $y=f(t)$ is shown in Figure 1.
3. Let $f(t)=t e^{-t^{2}}$ for all $t \in \mathbb{R}$. For each $b>0$ compute

$$
F(b)=\int_{0}^{b} t e^{-t^{2}} d t
$$

that is, $F(b)$ is the area under the graph of $y=f(t)$ from $t=0$ to $t=b$.
Compute $\lim _{b \rightarrow \infty} F(b)$. We denote this limit by $\int_{0}^{\infty} f(t) d t$, and call it the improper integral of f over the interval $(0, \infty)$.

Solution: Make the change of variables $u=-t^{2}$; so that $d u=-2 t d t$ and

$$
\begin{aligned}
F(b) & =\int_{0}^{b} t e^{-t^{2}} d t \\
& =-\frac{1}{2} \int_{0}^{-b^{2}} e^{u} d u \\
& =\frac{1}{2} \int_{-b^{2}}^{0} e^{u} d u \\
& =\frac{1}{2}\left[e^{u}\right]_{-b^{2}}^{0} \\
& =\frac{1}{2}\left(1-e^{-b^{2}}\right)
\end{aligned}
$$

Next, compute

$$
\begin{aligned}
\int_{0}^{\infty} f(t) d t & =\lim _{b \rightarrow \infty} F(b) \\
& =\lim _{b \rightarrow \infty} \frac{1}{2}\left(1-e^{-b^{2}}\right) \\
& =\frac{1}{2}
\end{aligned}
$$

4. Define $f(t)=t^{t}$, for all $t>0$, and put $g(t)=\ln [f(t)]$ for all $t>0$.
(a) By differentiating g with respect to t, come up with a formula for computing $f^{\prime}(t)$.
Note: You will need to apply the Chain Rule when computing $\frac{d}{d t}[\ln [f(t)]]$.
Solution: Note that, from

$$
\begin{equation*}
g(t)=\ln [f(t)] \tag{5}
\end{equation*}
$$

we obtain that

$$
\begin{equation*}
g(t)=t \ln t \tag{6}
\end{equation*}
$$

for $t>0$. Differentiating on both sided of (5) we obtain that

$$
\begin{equation*}
g^{\prime}(t)=\frac{1}{f(t)} f^{\prime}(t), \text { for } t>0 \tag{7}
\end{equation*}
$$

where we have applied the Chain Rule. On the other hand, applying the product rule on the right-hand side of (6), we obtain

$$
\begin{equation*}
g^{\prime}(t)=\ln t+1, \text { for } t>0 \tag{8}
\end{equation*}
$$

Equating the right-hand sides of (7) and (8) and solving for $f^{\prime}(t)$ then yields

$$
\begin{equation*}
f^{\prime}(t)=(\ln t+1) f(t), \text { for } t>0 \tag{9}
\end{equation*}
$$

(b) Compute $f^{\prime \prime}(t)$. Does the graph of $y=f(t)$ have any inflection points?

Solution: Differentiate $f^{\prime}(t)$ in (9), applying the product rule, to obtain

$$
\begin{equation*}
f^{\prime \prime}(t)=\frac{1}{t} f(t)+(\ln t+1) f^{\prime}(t), \quad \text { for } t>0 \tag{10}
\end{equation*}
$$

Next, substitute the expression for $f^{\prime}(t)$ in (9) into (10) to obtain

$$
\begin{equation*}
f^{\prime \prime}(t)=\left[\frac{1}{t}+(\ln t+1)^{2}\right] f(t), \quad \text { for } t>0 \tag{11}
\end{equation*}
$$

It follows from (11) that $f^{\prime \prime}(t)>0$ for $t>0$, so that the graph of $y=f(t)$ has no inflection points.
5. Let t_{o}, r and y_{o} denote real numbers.

Verify that $y(t)=y_{o} e^{r\left(t-t_{o}\right)}$, for $t \in \mathbb{R}$, is the unique solution of the initial value problem:

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=r y \\
y\left(t_{o}\right)=y_{o}
\end{array}\right.
$$

Solution: Note that, by the Chain Rule,

$$
\begin{aligned}
y^{\prime}(t) & =y_{o} e^{r\left(t-t_{o}\right)} \cdot \frac{d}{d t}\left[r\left(t-t_{o}\right)\right] \\
& =r\left[y_{o} e^{r\left(t-t_{o}\right)}\right] \\
& =r y(t)
\end{aligned}
$$

for all t. Next, substitute t_{o} for t to get

$$
y\left(t_{o}\right)=y_{o} e^{r\left(t-t_{o}\right)}=y_{o} e^{r\left(t_{o}-t_{o}\right)}=y_{o} e^{0}=y_{o}
$$

Hence, $y(t)=y_{o} e^{r\left(t-t_{o}\right)}$ solve the initial value problem

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=r y \tag{12}\\
y\left(t_{o}\right)=y_{o}
\end{array}\right.
$$

To show that $y(t)=y_{o} e^{r\left(t-t_{o}\right)}$, for $t \in \mathbb{R}$, is the only solution to the initial value problem in (12), let $v=v(t)$ be any solution to the initial value problem in (12); then,

$$
\begin{equation*}
v^{\prime}(t)=r v(t), \quad \text { for all } t \in \mathbb{R} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
v\left(t_{o}\right)=y_{o} \tag{14}
\end{equation*}
$$

Define the function

$$
\begin{equation*}
w(t)=\frac{v(t)}{e^{r\left(t-t_{o}\right)}}, \quad \text { for all } t \in \mathbb{R} \tag{15}
\end{equation*}
$$

Differentiating the function, w, defined in (15) we obtain, by the quotient rule, that

$$
\begin{equation*}
w^{\prime}(t)=\frac{e^{r\left(t-t_{o}\right)} v^{\prime}(t)-v(t) r e^{r\left(t-t_{o}\right)}}{e^{2 r\left(t-t_{o}\right)}}, \quad \text { for all } t \in \mathbb{R} \tag{16}
\end{equation*}
$$

where we have applied the Chain Rule. Next, use (13) to obtain from (16) that

$$
w^{\prime}(t)=\frac{r e^{r\left(t-t_{o}\right)} v(t)-v(t) r e^{r\left(t-t_{o}\right)}}{e^{2 r\left(t-t_{o}\right)}}, \quad \text { for all } t \in \mathbb{R}
$$

so that

$$
\begin{equation*}
w^{\prime}(t)=0, \quad \text { for all } t \in \mathbb{R} \tag{17}
\end{equation*}
$$

It follows from (17) that

$$
\begin{equation*}
w(t)=c, \quad \text { for all } t \in \mathbb{R} \tag{18}
\end{equation*}
$$

where c is a constant (see your result in Problem 1 of Assignment 1).
In order to find out the value of c in (18), use (18) and (15) to evaluate

$$
\begin{equation*}
c=\frac{v\left(t_{o}\right)}{e^{0}}=y_{o} \tag{19}
\end{equation*}
$$

where we have also used (14).
Next, use (15), (18) and (19) to obtain

$$
\frac{v(t)}{e^{r\left(t-t_{o}\right)}}=y_{o}, \quad \text { for all } t \in \mathbb{R}
$$

from which we get

$$
v(t)=y_{o} e^{r\left(t-t_{o}\right)}, \quad \text { for all } t \in \mathbb{R}
$$

so that any solution of (12) must in fact be equal to $y(t)=y_{o} e^{r\left(t-t_{o}\right)}$ for all $t \in \mathbb{R}$.

