Assignment #9

Due on Friday, October 21, 2016

Read Section 4.6 on *Analysis of the Malthusian Model* in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section on *Exponential Growth and Decay* in Section 6.1, pp. 432–437, in *Calculus for the Life Sciences* by Schreiber, Smith and Getz.

Do the following problems

- 1. Assume that a certain strain of *E Coli* bacteria in a culture has a doubling time of about 30 minutes.
 - (a) Assuming a Malthusian growth model for the bacteria, give an expression, N(t), for the number of bacteria in the culture at time t, given that at t = 0 there are N_o bacteria in the culture.
 - (b) How long does it take a thousand bacteria in the culture to produce one million?
- 2. Assume that the bacterial colony described in Problem 1 has an unlimited supply of nutrients conducive to Malthusian growth. Assume also that the bacteria are spherical with a diameter of 10^{-6} meters. Estimate the time that it would take a single bacterium of E Coli to grow into a mega–colony to fill the Earth's oceans, seas and bays. Use the estimate given by WolframAlpha® (http://www.wolframalpha.com/) of 1.332×10^{21} liters for the Earth's oceans, seas and bays.
- 3. Suppose a bacterial colony is growing according to the Malthusian model. Assume that the length of a division cycle corresponds to the doubling time. If the time, t, is measured in units of division cycle divided by $\ln 2$, give a formula for N(t), given that $N(0) = N_o$. By how much does the population increase in one unit of time?
- 4. Assume that the rate at which a drug leaves the bloodstream and passes into the urine is proportional to the quantity of the drug in the blood at that time. Let Q = Q(t) denote the amount of the drug in the bloodstream at time t. In Problem 3 of Assignment 1, you applied a conservation principle to derive the differential equation

$$\frac{dQ}{dt} = -kQ,\tag{1}$$

where k is a positive constant of proportionality, and t is measured in hours.

- (a) Solve the differential equation in (1) for the case in which an initial dose of Q_o is injected directly into the blood at time t = 0.
- (b) Assume that 20% of the initial dose is left in the blood after 3 hours. Write a formula for computing Q(t) for any time t, in hours.
- (c) What percentage of the initial dosage of the drug is left in the patient's body after 6 hours?
- 5. In a one-compartment dilution experiment, a substance is found dissolved in water in an initial amount Q_o (in moles) in a compartment with constant volume V. Suppose pure distilled water flows into the compartment at a constant rate r (in moles per liter) and that the well-stirred mixture is drained from the tank at the same rate. Suppose that in the experiment the following concentrations of the substance were observed as a function of time:

t[sec]	C[moles/liter]
0	0.024
1	0.011
2	0.0048
3	0.0024
4	0.0010

If $Q_o = 0.1$ mole, find the flow rate r and the volume V.

(Suggestion: Plot the natural logarithm of the concentration, $\ln C$, versus time, t, and find the best straight line that fits the data.)