Solutions to Assignment #9

- 1. Assume that a certain strain of E Coli bacteria in a culture has a doubling time of about 30 minutes.
 - (a) Assuming a Malthusian growth model for the bacteria, give an expression, N(t), for the number of bacteria in the culture at time t, given that at t = 0 there are N_o bacteria in the culture.

Solution: Assuming a Malthusian growth model given by the differential equation

$$\frac{dN}{dt} = rN,$$

where r is the constant *per-capita* growth rate, we have that

$$N(t) = N_o e^{rt}, \text{ for all } t \ge 0, \tag{1}$$

where

so that, using (2),

$$r = \frac{\ln 2}{\tau_2},\tag{2}$$

and τ_2 is the doubling time. If t is measured in hours, then

$$\tau_2 = \frac{1}{2} \text{ hours},$$

 $r = 2 \ln 2 \doteq 1.39,$
(3)

where the dot on the equal sign in (3) indicates that the left-hand side of (3) is a rational approximation to r. Substituting the approximate value for a in (3) into (1) yields

$$N(t) \doteq N_o e^{1.39t},\tag{4}$$

where t is measured in hours from t = 0.

(b) How long does it take a thousand bacteria in the culture to produce one million?

Solution: Suppose that $N_o = 1000$ in (4). We want to find t so that $N(t) = 10^6$. Thus, using (4) we see that we need to solve the equation

$$10^3 e^{1.39t} \doteq 10^6, \tag{5}$$

for t. The equation in (5) is equivalent to

$$e^{1.39t} \doteq 10^3,$$

Fall 2016 2

which can be solved for t by taking the natural logarithm on both sides of the equation to yield

$$t \doteq \frac{3\ln(10)}{1.38} \doteq 4.97$$
 hours,

or 4 hours and 58 minutes, or nearly 5 hours.

2. Assume that the bacterial colony described in Problem 1 has an unlimited supply of nutrients conducive to Malthusian growth. Assume also that the bacteria are spherical with a diameter of 10^{-6} meters. Estimate the time that it would take a single bacterium of *E Coli* to grow into a mega–colony to fill the Earth's oceans, seas and bays. Use the estimate given by WolframAlpha[®] (http://www.wolframalpha.com/) of 1.332×10^{21} liters for the Earth's oceans, seas and bays.

Solution: We use the result in (4) with $N_o = 1$ to get that

$$N(t) \doteq e^{1.39t},\tag{6}$$

where t is measured in hours from t = 0. Assuming spherical bacteria of radii about 10^{-6} meters, the volume, v_1 , of one bacterium is about

$$v_1 \doteq \frac{4}{3}\pi \left(\frac{1}{2} \times 10^{-6}\right)^3$$
 cubic meters,

or

$$v_1 \doteq 5.24 \times 10^{-19}$$
 cubic meters.

Using the fact that one cubic meter is equivalent to 1000 liters, we can write the volume of one bacterium in liters as

$$v_1 \doteq 5.24 \times 10^{-16}$$
 liters. (7)

Let N denote the number of bacteria needed to reach a volume of 1.332×10^{21} liters, or

$$Nv_1 = 1.332 \times 10^{21}.$$
 (8)

Combining (7) and (8) we see that

$$N \doteq \frac{1.332 \times 10^{21}}{5.24 \times 10^{-16}} \doteq 2.54 \times 10^{36}.$$
 (9)

According to the values predicted by the Malthusian model in (6), the value of N in (9) is achieved when

$$e^{1.39t} = 2.54 \times 10^{36},$$

or

$$t = \frac{\ln(2.54) + 36\ln(10)}{1.39} \doteq 60.31 \text{ hours},$$

or 2.51 days, or about 2 days, 12 hours and 14 minutes.

3. Suppose a bacterial colony is growing according to the Malthusian model. Assume that the length of a division cycle corresponds to the doubling time. If the time, t, is measured in units of division cycle divided by $\ln 2$, give a formula for N(t), given that $N(0) = N_o$. By how much does the population increase in one unit of time?

Solution: Assume first the $N = N(\tau)$, where τ is measured in an arbitrary continuous time unit. Then, the solution to the Malthus differential equation

$$\frac{dN}{d\tau} = rN,$$

subject to $N(0) = N_o$, is given by

$$N(t) = N_o e^{r\tau}$$

If τ_2 is the doubling time, then $r = \frac{\ln(2)}{\tau_2}$ and so

$$N(\tau) = N_o \exp\left(\frac{\ln(2)}{\tau_2}\tau\right) = N_o \exp\left(\frac{\tau}{\tau_2/\ln(2)}\right).$$

Thus, if t counts the number of division cycles divided by $\ln(2)$, it follows that $t = \frac{\tau}{\tau_2 / \ln(2)}$; and therefore

$$N(t) = N_o e^t.$$

Thus, in one division cycle divided by $\ln(2)$, the population increases by

$$\frac{N(1) - N(0)}{N_o} = \frac{N_o e - N_o}{N_o} = e - 1 \approx 1.718$$

or about 172%.

4. Assume that the rate at which a drug leaves the bloodstream and passes into the urine is proportional to the quantity of the drug in the blood at that time. Let Q = Q(t) denote the amount of the drug in the bloodstream at time t. In Problem 3 of Assignment 1, you applied a conservation principle to derive the differential equation

$$\frac{dQ}{dt} = -kQ,\tag{10}$$

where k is a positive constant of proportionality, and t is measured in hours.

Math 31S. Rumbos

(a) Solve the differential equation in (10) for the case in which an initial dose of Q_o is injected directly into the blood at time t = 0.

Answer:
$$Q(t) = Q_o e^{-kt}$$
 for all t.

(b) Assume that 20% of the initial dose is left in the blood after 3 hours. Write a formula for computing Q(t) for any time t, in hours.

Solution: If $Q(3) = 0.20 Q_o$, then

$$Q_o e^{-3k} = 0.20 \ Q_o \quad \text{or} \quad e^{-3k} = \frac{1}{5}$$

Thus, $-k = \frac{1}{3} \ln \left(\frac{1}{5}\right)$, or $k = \frac{\ln 5}{3}$. Estimating k to two decimal places we obtain that $k \doteq 0.54$. we then have that

$$Q(t) \doteq Q_o e^{-0.54t},$$
 (11)

where t is measured in hours from the initial time t = 0.

(c) What percentage of the initial dosage of the drug is left in the patient's body after 6 hours?

Solution: After 6 hours, the amount of drug present in the patient's blood is

$$Q(6) = Q_o e^{-0.54(6)} \doteq 0.04 Q_o,$$

or 4% of the initial dose.

5. In a one-compartment dilution experiment, a substance is found dissolved in water in an initial amount Q_o (in moles) in a compartment with constant volume V. Suppose pure distilled water flows into the compartment at a constant rate r (in moles per liter) and that the well-stirred mixture is drained from the tank at the same rate. Suppose that in the experiment the following concentrations of the substance were observed as a function of time:

t[sec]	C[moles/liter]
0	0.024
1	0.011
2	0.0048
3	0.0024
4	0.0010

If $Q_o = 0.1$ mole, find the flow rate r and the volume V.

(Suggestion: Plot the natural logarithm of the concentration, $\ln C$, versus time, t, and find the best straight line that fits the data.)

Solution: Applying the conservation principle

$$\frac{dQ}{dt} = \text{Rate of } Q \text{ in} - \text{Rate of } Q \text{ out,}$$

with

Rate of
$$Q$$
 in $= 0$,

since distilled water is flowing into the compartment, and

Rate of
$$Q$$
 out $= \frac{Q}{V}r$,

we obtain that

$$\frac{dQ}{dt} = -\frac{r}{V} Q. \tag{12}$$

Solving the differential equation in (12) subject to the initial condition in (12) yields

$$Q(t) = Q_o \exp\left(-\frac{r}{V}t\right), \quad \text{for all } t.$$
(13)

Dividing the expression in (13) we obtain the following expression for the concentration, C = C(t), of the substance in the solution,

$$C(t) = \frac{Q_o}{V} \exp\left(-\frac{r}{V}t\right), \quad \text{for all } t.$$
(14)

Taking the natural logarithm function on both sided of (14) yields

$$\ln(C) = \ln\left(\frac{Q_o}{V}\right) - \frac{r}{V} t, \quad \text{for all } t.$$
(15)

Thus, according to (15) plotting $\ln(C)$ versus t should yield a straight line with slope $-\frac{r}{V}$ and y-intercept $\ln\left(\frac{Q_o}{V}\right)$. Hence, if we want to estimate r and V, in a plot of $\ln(C)$ versus t, we can find the best linear fit to the data and use the fit to get estimates for the slope and y-intercept. Table 1 shows the values of t and $\ln(C)$, the latter rounded up to four decimal places. Figure 1 shows a plot of the data in Table 1 and the least-squares best fitting line obtained using WolframAlpha[®]. The equation of the best fitting line is

$$y = -3.72804 - 0.78786 t. (16)$$

t	$\ln(C)$
(sec)	
0	-3.7297
1	-4.5099
2	-5.3391
3	-6.0323
4	-6.9078

Table 1: Values of t and $\ln(C)$

Figure 1: Linear Fit of Data in Table 1

Math 31S. Rumbos

Fall 2016 7

Thus, in view of (16), we see that an estimate for $\ln\left(\frac{Q_o}{V}\right)$ is -3.72804 so that

$$\ln\left(\frac{Q_o}{V}\right) \doteq -3.72804,$$

so that

$$\frac{Q_o}{V} \doteq 0.0240. \tag{17}$$

Solving for V in (17) and using the value of 0.1 mole for Q_o , we obtain from (17) that

$$V \doteq 4.17$$
 liters. (18)

To find r, use the equation of the best-fitting line in (16) to obtain the estimate

$$\frac{r}{V} \doteq 0.78786.$$
 (19)

Thus, using the estimate for V in (18), we obtain from (19) that $r \doteq 3.29 \text{ sec}^{-1}$.