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Solutions to Assignment #9

1. Assume that a certain strain of E Coli bacteria in a culture has a doubling time
of about 30 minutes.

(a) Assuming a Malthusian growth model for the bacteria, give an expression,
N(t), for the number of bacteria in the culture at time t, given that at
t = 0 there are No bacteria in the culture.

Solution: Assuming a Malthusian growth model given by the differential
equation

dN

dt
= rN,

where r is the constant per–capita growth rate, we have that

N(t) = Noe
rt, for all t > 0, (1)

where

r =
ln 2

τ2
, (2)

and τ2 is the doubling time. If t is measured in hours, then

τ2 =
1

2
hours,

so that, using (2),
r = 2 ln 2 =̇ 1.39, (3)

where the dot on the equal sign in (3) indicates that the left–hand side of
(3) is a rational approximation to r. Substituting the approximate value
for a in (3) into (1) yields

N(t) =̇ Noe
1.39t, (4)

where t is measured in hours from t = 0. �

(b) How long does it take a thousand bacteria in the culture to produce one
million?

Solution: Suppose that No = 1000 in (4). We want to find t so that
N(t) = 106. Thus, using (4) we see that we need to solve the equation

103e1.39t =̇ 106, (5)

for t. The equation in (5) is equivalent to

e1.39t =̇ 103,
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which can be solved for t by taking the natural logarithm on both sides of
the equation to yield

t =̇
3 ln(10)

1.38
=̇ 4.97 hours,

or 4 hours and 58 minutes, or nearly 5 hours. �

2. Assume that the bacterial colony described in Problem 1 has an unlimited
supply of nutrients conducive to Malthusian growth. Assume also that the
bacteria are spherical with a diameter of 10−6 meters. Estimate the time that
it would take a single bacterium of E Coli to grow into a mega–colony to fill
the Earth’s oceans, seas and bays. Use the estimate given by WolframAlpha R©

(http://www.wolframalpha.com/) of 1.332 × 1021 liters for the Earth’s oceans,
seas and bays.

Solution: We use the result in (4) with No = 1 to get that

N(t) =̇ e1.39t, (6)

where t is measured in hours from t = 0. Assuming spherical bacteria of radii
about 10−6 meters, the volume, v1, of one bacterium is about

v1 =̇
4

3
π

(
1

2
× 10−6

)3

cubic meters,

or
v1 =̇ 5.24 × 10−19 cubic meters.

Using the fact that one cubic meter is equivalent to 1000 liters, we can write
the volume of one bacterium in liters as

v1 =̇ 5.24 × 10−16 liters. (7)

Let N denote the number of bacteria needed to reach a volume of 1.332 × 1021

liters, or
Nv1 = 1.332 × 1021. (8)

Combining (7) and (8) we see that

N =̇
1.332 × 1021

5.24 × 10−16
=̇ 2.54 × 1036. (9)

According to the values predicted by the Malthusian model in (6), the value of
N in (9) is achieved when

e1.39t = 2.54 × 1036,
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or

t =
ln(2.54) + 36 ln(10)

1.39
=̇ 60.31 hours,

or 2.51 days, or about 2 days, 12 hours and 14 minutes. �

3. Suppose a bacterial colony is growing according to the Malthusian model. As-
sume that the length of a division cycle corresponds to the doubling time. If
the time, t, is measured in units of division cycle divided by ln 2, give a formula
for N(t), given that N(0) = No. By how much does the population increase in
one unit of time?

Solution: Assume first the N = N(τ), where τ is measured in an arbitrary
continuous time unit. Then, the solution to the Malthus differential equation

dN

dτ
= rN,

subject to N(0) = No, is given by

N(t) = Noe
rτ .

If τ2 is the doubling time, then r =
ln(2)

τ2
and so

N(τ) = No exp

(
ln(2)

τ2
τ

)
= No exp

(
τ

τ2/ ln(2)

)
.

Thus, if t counts the number of division cycles divided by ln(2), it follows that

t =
τ

τ2/ ln(2)
; and therefore

N(t) = Noe
t.

Thus, in one division cycle divided by ln(2), the population increases by

N(1) −N(0)

No

=
Noe−No

No

= e− 1 ≈ 1.718

or about 172%. �

4. Assume that the rate at which a drug leaves the bloodstream and passes into
the urine is proportional to the quantity of the drug in the blood at that time.
Let Q = Q(t) denote the amount of the drug in the bloodstream at time t. In
Problem 3 of Assignment 1, you applied a conservation principle to derive the
differential equation

dQ

dt
= −kQ, (10)

where k is a positive constant of proportionality, and t is measured in hours.
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(a) Solve the differential equation in (10) for the case in which an initial dose
of Qo is injected directly into the blood at time t = 0.

Answer: Q(t) = Qoe
−kt for all t. �

(b) Assume that 20% of the initial dose is left in the blood after 3 hours. Write
a formula for computing Q(t) for any time t, in hours.

Solution: If Q(3) = 0.20 Qo, then

Qoe
−3k = 0.20 Qo or e−3k =

1

5
.

Thus, −k =
1

3
ln

(
1

5

)
, or k =

ln 5

3
. Estimating k to two decimal places

we obtain that k =̇ 0.54. we then have that

Q(t) =̇ Qoe
−0.54t, (11)

where t is measured in hours from the initial time t = 0. �

(c) What percentage of the initial dosage of the drug is left in the patient’s
body after 6 hours?

Solution: After 6 hours, the amount of drug present in the patient’s blood
is

Q(6) = Qoe
−0.54(6) =̇ 0.04Qo,

or 4% of the initial dose. �

5. In a one–compartment dilution experiment, a substance is found dissolved in
water in an initial amount Qo (in moles) in a compartment with constant volume
V . Suppose pure distilled water flows into the compartment at a constant rate
r (in moles per liter) and that the well–stirred mixture is drained from the tank
at the same rate. Suppose that in the experiment the following concentrations
of the substance were observed as a function of time:

t[sec] C[moles/liter]
0 0.024
1 0.011
2 0.0048
3 0.0024
4 0.0010

If Qo = 0.1 mole, find the flow rate r and the volume V .
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(Suggestion: Plot the natural logarithm of the concentration, lnC, versus time,
t, and find the best straight line that fits the data.)

Solution: Applying the conservation principle

dQ

dt
= Rate of Q in − Rate of Q out,

with
Rate of Q in = 0,

since distilled water is flowing into the compartment, and

Rate of Q out =
Q

V
r,

we obtain that
dQ

dt
= − r

V
Q. (12)

Solving the differential equation in (12) subject to the initial condition in (12)
yields

Q(t) = Qo exp
(
− r

V
t
)
, for all t. (13)

Dividing the expression in (13) we obtain the following expression for the con-
centration, C = C(t), of the substance in the solution,

C(t) =
Qo

V
exp

(
− r

V
t
)
, for all t. (14)

Taking the natural logarithm function on both sided of (14) yields

ln(C) = ln

(
Qo

V

)
− r

V
t, for all t. (15)

Thus, according to (15) plotting ln(C) versus t should yield a straight line with

slope − r

V
and y–intercept ln

(
Qo

V

)
. Hence, if we want to estimate r and V ,

in a plot of ln(C) versus t, we can find the best linear fit to the data and use
the fit to get estimates for the slope and y–intercept. Table 1 shows the values
of t and ln(C), the latter rounded up to four decimal places. Figure 1 shows a
plot of the data in Table 1 and the least–squares best fitting line obtained using
WolframAlpha R©. The equation of the best fitting line is

y = −3.72804 − 0.78786 t. (16)
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t ln(C)
(sec)

0 −3.7297
1 −4.5099
2 −5.3391
3 −6.0323
4 −6.9078

Table 1: Values of t and ln(C)

Figure 1: Linear Fit of Data in Table 1
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Thus, in view of (16), we see that an estimate for ln

(
Qo

V

)
is −3.72804 so that

ln

(
Qo

V

)
=̇ − 3.72804,

so that
Qo

V
=̇ 0.0240. (17)

Solving for V in (17) and using the value of 0.1 mole for Qo, we obtain from
(17) that

V =̇ 4.17 liters. (18)

To find r, use the equation of the best–fitting line in (16) to obtain the estimate

r

V
=̇ 0.78786. (19)

Thus, using the estimate for V in (18), we obtain from (19) that r =̇ 3.29 sec−1.
�


