Solutions to Assignment \#9

1. Assume that a certain strain of E Coli bacteria in a culture has a doubling time of about 30 minutes.
(a) Assuming a Malthusian growth model for the bacteria, give an expression, $N(t)$, for the number of bacteria in the culture at time t, given that at $t=0$ there are N_{o} bacteria in the culture.
Solution: Assuming a Malthusian growth model given by the differential equation

$$
\frac{d N}{d t}=r N
$$

where r is the constant per-capita growth rate, we have that

$$
\begin{equation*}
N(t)=N_{o} e^{r t}, \text { for all } t \geqslant 0 \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
r=\frac{\ln 2}{\tau_{2}} \tag{2}
\end{equation*}
$$

and τ_{2} is the doubling time. If t is measured in hours, then

$$
\tau_{2}=\frac{1}{2} \text { hours }
$$

so that, using (2),

$$
\begin{equation*}
r=2 \ln 2 \doteq 1.39 \tag{3}
\end{equation*}
$$

where the dot on the equal sign in (3) indicates that the left-hand side of (3) is a rational approximation to r. Substituting the approximate value for a in (3) into (1) yields

$$
\begin{equation*}
N(t) \doteq N_{o} e^{1.39 t} \tag{4}
\end{equation*}
$$

where t is measured in hours from $t=0$.
(b) How long does it take a thousand bacteria in the culture to produce one million?
Solution: Suppose that $N_{o}=1000$ in (4). We want to find t so that $N(t)=10^{6}$. Thus, using (4) we see that we need to solve the equation

$$
\begin{equation*}
10^{3} e^{1.39 t} \doteq 10^{6} \tag{5}
\end{equation*}
$$

for t. The equation in (5) is equivalent to

$$
e^{1.39 t} \doteq 10^{3}
$$

which can be solved for t by taking the natural logarithm on both sides of the equation to yield

$$
t \doteq \frac{3 \ln (10)}{1.38} \doteq 4.97 \text { hours }
$$

or 4 hours and 58 minutes, or nearly 5 hours.
2. Assume that the bacterial colony described in Problem 1 has an unlimited supply of nutrients conducive to Malthusian growth. Assume also that the bacteria are spherical with a diameter of 10^{-6} meters. Estimate the time that it would take a single bacterium of E Coli to grow into a mega-colony to fill the Earth's oceans, seas and bays. Use the estimate given by WolframAlpha ${ }^{\circledR}$ (http://www.wolframalpha.com/) of 1.332×10^{21} liters for the Earth's oceans, seas and bays.
Solution: We use the result in (4) with $N_{o}=1$ to get that

$$
\begin{equation*}
N(t) \doteq e^{1.39 t} \tag{6}
\end{equation*}
$$

where t is measured in hours from $t=0$. Assuming spherical bacteria of radii about 10^{-6} meters, the volume, v_{1}, of one bacterium is about

$$
v_{1} \doteq \frac{4}{3} \pi\left(\frac{1}{2} \times 10^{-6}\right)^{3} \quad \text { cubic meters }
$$

or

$$
v_{1} \doteq 5.24 \times 10^{-19} \text { cubic meters }
$$

Using the fact that one cubic meter is equivalent to 1000 liters, we can write the volume of one bacterium in liters as

$$
\begin{equation*}
v_{1} \doteq 5.24 \times 10^{-16} \text { liters } \tag{7}
\end{equation*}
$$

Let N denote the number of bacteria needed to reach a volume of 1.332×10^{21} liters, or

$$
\begin{equation*}
N v_{1}=1.332 \times 10^{21} \tag{8}
\end{equation*}
$$

Combining (7) and (8) we see that

$$
\begin{equation*}
N \doteq \frac{1.332 \times 10^{21}}{5.24 \times 10^{-16}} \doteq 2.54 \times 10^{36} \tag{9}
\end{equation*}
$$

According to the values predicted by the Malthusian model in (6), the value of N in (9) is achieved when

$$
e^{1.39 t}=2.54 \times 10^{36}
$$

or

$$
t=\frac{\ln (2.54)+36 \ln (10)}{1.39} \doteq 60.31 \text { hours }
$$

or 2.51 days, or about 2 days, 12 hours and 14 minutes.
3. Suppose a bacterial colony is growing according to the Malthusian model. Assume that the length of a division cycle corresponds to the doubling time. If the time, t, is measured in units of division cycle divided by $\ln 2$, give a formula for $N(t)$, given that $N(0)=N_{o}$. By how much does the population increase in one unit of time?
Solution: Assume first the $N=N(\tau)$, where τ is measured in an arbitrary continuous time unit. Then, the solution to the Malthus differential equation

$$
\frac{d N}{d \tau}=r N
$$

subject to $N(0)=N_{o}$, is given by

$$
N(t)=N_{o} e^{r \tau}
$$

If τ_{2} is the doubling time, then $r=\frac{\ln (2)}{\tau_{2}}$ and so

$$
N(\tau)=N_{o} \exp \left(\frac{\ln (2)}{\tau_{2}} \tau\right)=N_{o} \exp \left(\frac{\tau}{\tau_{2} / \ln (2)}\right)
$$

Thus, if t counts the number of division cycles divided by $\ln (2)$, it follows that $t=\frac{\tau}{\tau_{2} / \ln (2)} ;$ and therefore

$$
N(t)=N_{o} e^{t}
$$

Thus, in one division cycle divided by $\ln (2)$, the population increases by

$$
\frac{N(1)-N(0)}{N_{o}}=\frac{N_{o} e-N_{o}}{N_{o}}=e-1 \approx 1.718
$$

or about 172%.
4. Assume that the rate at which a drug leaves the bloodstream and passes into the urine is proportional to the quantity of the drug in the blood at that time. Let $Q=Q(t)$ denote the amount of the drug in the bloodstream at time t. In Problem 3 of Assignment 1, you applied a conservation principle to derive the differential equation

$$
\begin{equation*}
\frac{d Q}{d t}=-k Q \tag{10}
\end{equation*}
$$

where k is a positive constant of proportionality, and t is measured in hours.
(a) Solve the differential equation in (10) for the case in which an initial dose of Q_{o} is injected directly into the blood at time $t=0$.

Answer: $Q(t)=Q_{o} e^{-k t}$ for all t.
(b) Assume that 20% of the initial dose is left in the blood after 3 hours. Write a formula for computing $Q(t)$ for any time t, in hours.
Solution: If $Q(3)=0.20 Q_{o}$, then

$$
Q_{o} e^{-3 k}=0.20 Q_{o} \quad \text { or } \quad e^{-3 k}=\frac{1}{5}
$$

Thus, $-k=\frac{1}{3} \ln \left(\frac{1}{5}\right)$, or $k=\frac{\ln 5}{3}$. Estimating k to two decimal places we obtain that $k \doteq 0.54$. we then have that

$$
\begin{equation*}
Q(t) \doteq Q_{o} e^{-0.54 t} \tag{11}
\end{equation*}
$$

where t is measured in hours from the initial time $t=0$.
(c) What percentage of the initial dosage of the drug is left in the patient's body after 6 hours?
Solution: After 6 hours, the amount of drug present in the patient's blood is

$$
Q(6)=Q_{o} e^{-0.54(6)} \doteq 0.04 Q_{o}
$$

or 4% of the initial dose.
5. In a one-compartment dilution experiment, a substance is found dissolved in water in an initial amount Q_{o} (in moles) in a compartment with constant volume V. Suppose pure distilled water flows into the compartment at a constant rate r (in moles per liter) and that the well-stirred mixture is drained from the tank at the same rate. Suppose that in the experiment the following concentrations of the substance were observed as a function of time:

$t[\mathrm{sec}]$	C [moles $/$ liter $]$
0	0.024
1	0.011
2	0.0048
3	0.0024
4	0.0010

If $Q_{o}=0.1$ mole, find the flow rate r and the volume V.
(Suggestion: Plot the natural logarithm of the concentration, $\ln C$, versus time, t, and find the best straight line that fits the data.)
Solution: Applying the conservation principle

$$
\frac{d Q}{d t}=\text { Rate of } Q \text { in - Rate of } Q \text { out }
$$

with

$$
\text { Rate of } Q \text { in }=0 \text {, }
$$

since distilled water is flowing into the compartment, and

$$
\text { Rate of } Q \text { out }=\frac{Q}{V} r,
$$

we obtain that

$$
\begin{equation*}
\frac{d Q}{d t}=-\frac{r}{V} Q \tag{12}
\end{equation*}
$$

Solving the differential equation in (12) subject to the initial condition in (12) yields

$$
\begin{equation*}
Q(t)=Q_{o} \exp \left(-\frac{r}{V} t\right), \quad \text { for all } t \tag{13}
\end{equation*}
$$

Dividing the expression in (13) we obtain the following expression for the concentration, $C=C(t)$, of the substance in the solution,

$$
\begin{equation*}
C(t)=\frac{Q_{o}}{V} \exp \left(-\frac{r}{V} t\right), \quad \text { for all } t \tag{14}
\end{equation*}
$$

Taking the natural logarithm function on both sided of (14) yields

$$
\begin{equation*}
\ln (C)=\ln \left(\frac{Q_{o}}{V}\right)-\frac{r}{V} t, \quad \text { for all } t \tag{15}
\end{equation*}
$$

Thus, according to (15) plotting $\ln (C)$ versus t should yield a straight line with slope $-\frac{r}{V}$ and y-intercept $\ln \left(\frac{Q_{o}}{V}\right)$. Hence, if we want to estimate r and V, in a plot of $\ln (C)$ versus t, we can find the best linear fit to the data and use the fit to get estimates for the slope and y-intercept. Table 1 shows the values of t and $\ln (C)$, the latter rounded up to four decimal places. Figure 1 shows a plot of the data in Table 1 and the least-squares best fitting line obtained using WolframAlpha ${ }^{\circledR}$. The equation of the best fitting line is

$$
\begin{equation*}
y=-3.72804-0.78786 t \tag{16}
\end{equation*}
$$

t (sec)	$\ln (C)$
0	-3.7297
1	-4.5099
2	-5.3391
3	-6.0323
4	-6.9078

Table 1: Values of t and $\ln (C)$

Figure 1: Linear Fit of Data in Table 1

Thus, in view of (16), we see that an estimate for $\ln \left(\frac{Q_{o}}{V}\right)$ is -3.72804 so that

$$
\ln \left(\frac{Q_{o}}{V}\right) \doteq-3.72804
$$

so that

$$
\begin{equation*}
\frac{Q_{o}}{V} \doteq 0.0240 \tag{17}
\end{equation*}
$$

Solving for V in (17) and using the value of 0.1 mole for Q_{o}, we obtain from (17) that

$$
\begin{equation*}
V \doteq 4.17 \text { liters. } \tag{18}
\end{equation*}
$$

To find r, use the equation of the best-fitting line in (16) to obtain the estimate

$$
\begin{equation*}
\frac{r}{V} \doteq 0.78786 \tag{19}
\end{equation*}
$$

Thus, using the estimate for V in (18), we obtain from (19) that $r \doteq 3.29 \mathrm{sec}^{-1}$.

