Review Problems for Exam 1

1. Water leaks out a barrel at a rate proportional to the square root of the depth of the water in the barrel at that time. Derive a differential equation for the depth, $h(t)$, of water in the barrel at time t, given that the cross-sectional area of the barrel is a constant A.
2. A compartment has a fixed volume, V, of isopropyl alcohol solution. A 75% solution of isopropyl alcohol is introduced into the compartment at a rate of $F=0.1$ liters per minute. Assume that the a well-stirred mixture of the solution flows out of the compartment at the same rate, F.
(a) Derive a differential equation for the concentration of alcohol, in percent volume, at any time t.
(b) Sketch possible solutions of the equation.
3. A 1500 gallon tank initially contains 600 gallons of water with 5 lbs of salt dissolved in it. Salt water enters the tank at a rate of $9 \mathrm{gal} / \mathrm{hr}$ with a salt concentration of $3 \mathrm{lbs} /$ gal. If a well mixed solution leaves the tank at a rate of $6 \mathrm{gal} / \mathrm{hr}$, derive a differential equation satisfied by the amount of salt in the solution in the tank.
4. Suppose that $y=y(t)$ is a solution of the differential equation

$$
\begin{equation*}
\frac{d y}{d t}=-2 t y \tag{1}
\end{equation*}
$$

(a) Assume that $y(t)>0$ for all t. Determine the values of t for which $y(t)$ increases or decreases.
(b) Compute $y^{\prime \prime}$ in terms of t and y, and determine the values of t for which the graph of $y=y(t)$ is concave up or concave down.
(c) Given that $y(0)=1$, use the qualitative information obtained in the previous parts to sketch the graph of $y=y(t)$.
5. Sketch possible solutions of the differential equation

$$
\frac{d y}{d t}=(y-1)(y-2) .
$$

6. In a chemical reaction

$$
A+B \rightarrow C
$$

let $y(t)$ denote the concentration of the product C at time t. Assume that y is a differentiable function of t. If C_{A} denote the initial concentration of reactant A and C_{B} the initial concentration of reactant B, the Law of Mass Action states that

$$
\begin{equation*}
\frac{d y}{d t}=k\left(C_{A}-y\right)\left(C_{B}-y\right), \tag{2}
\end{equation*}
$$

where k is a positive constant of proportionality.
Sketch possible solutions of (2) for the case in which $C_{A}=40$ and $C_{B}=80$.
7. The following equation models the growth of a population that is being harvested at a constant rate:

$$
\frac{d N}{d t}=2 N-0.01 N^{2}-75
$$

Sketch possible solutions of the differential equation.
8. Use the Chain Rule to show that $y(t)=y_{o} \exp (F(t))$, where F is the antiderivative of f with $F(0)=0$, is a solution of the initial value problem: $\frac{d y}{d t}=f(t) y$, $y(0)=y_{o}$.
9. Evaluate the following integrals
(a) $\int_{0}^{1} \frac{e^{-x}}{2-e^{-x}} \mathrm{~d} x$
(b) $\int \frac{1}{x \ln x} \mathrm{~d} x$
(c) $\int_{1}^{2} \frac{\ln x}{x} \mathrm{~d} x$
(d) $\int \frac{e^{\sqrt{x}}}{\sqrt{x}} \mathrm{~d} x$
10. Solve the initial value problem

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=\frac{1}{t+\sqrt{t}} \\
y(1)=2 \ln (2)
\end{array}\right.
$$

for $t>0$.

