Fall 2016 1

Solutions to Review Problems for Exam #2

1. Find a solution of the initial value problem $\frac{dy}{dt} = e^{t-y}$, y(0) = 1. Solution: Write the differential equation as

$$\frac{dy}{dt} = e^t e^{-y},$$

and separate variables to obtain

$$\int e^y \, dy = \int e^t \, dt,$$

which integrates to

$$e^y = e^t + c, \tag{1}$$

for arbitrary c. Using the initial condition y(0) = 1 in (1) yields

$$e = 1 + c,$$

from which we get that

$$c = e - 1. \tag{2}$$

Substituting the value for c in (2) into the equation in (1) yields

$$e^y = e^t + e - 1,$$

which can be solved for y to obtain

$$y(t) = \ln[e^t + e - 1], \quad \text{for all } t \in \mathbb{R}.$$

- 2. The temperature in a hot iron decreases at a rate 0.11 times the difference between its present temperature and room temperature (20° C) .
 - (a) Write a differential equation for the temperature of the iron. **Solution:** Let u = u(t) denote the temperature of the hot iron at time t. Then,

$$\frac{du}{dt} = -0.11(u - 20),\tag{3}$$

where u is measured in degrees Celsius and t in minutes.

Math 31S. Rumbos

(b) If the initial temperature of the rod is 100° C, and the time is measured in minutes, how long will it take for the rod to reach a temperature of 25°C? *Solution:* The general solution of the differential equation in (3) is

$$u(t) = 20 + ce^{-0.11 t}, \quad \text{for all } t \in \mathbb{R},$$
(4)

for arbitrary constant c.

To find the value of c in (4), we use the initial condition u(0) = 100 in (4) to obtain the equation

$$20 + c = 100,$$

which yields

$$c = 80. \tag{5}$$

Substituting the value of c in (5) into the expression for u in (4), we obtain that

$$u(t) = 20 + 80e^{-0.11 t}$$
, for all $t \in \mathbb{R}$. (6)

Next, we find the value of t for which u(t) = 25, or

$$20 + 80e^{-0.11 t} = 25,$$

or

$$80e^{-0.11 t} = 5.$$

which can be solved for t to yield

$$t = -\frac{\ln(1/16)}{0.11} = \frac{4\ln 2}{0.11} \doteq 25$$
 minutes.

Thus, it will take about 25 minutes for the hot iron to reach the temperature or 25 degrees Celsius. $\hfill \Box$

3. Consider the first-order ordinary differential equation

$$\frac{dy}{dt} = y^2 - 2y + 1. (7)$$

(a) Determine equilibrium points and determine the nature of the stability of the equilibrium solutions by means of the principle of linearized stability, if applicable.

Solution: Put $f(y) = y^2 - 2y + 1$ and write $f(y) = (y - 1)^2$; so that, the differential equation in (7) has one equilibrium solution; namely,

 $\overline{y} = 1.$

Since f'(y) = 2(y - 1), f'(1) = 0; so that, the principle of linearized stability does not apply in this case.

Math 31S. Rumbos

(b) Use separation of variables to find the general solution of the equation in (7).

Solution: Use separation of variables to solve the equation

$$\frac{dy}{dt} = (y-1)^2.$$

We obtain

$$\int \frac{1}{(y-1)^2} \, dy = \int dt,$$

which yields

$$-\frac{1}{y-1} = t + c_1, \tag{8}$$

for some arbitrary constant c_1 . Multiply on both sides of the equation in (8) by -1 and solve for y to obtain

$$y(t) = 1 + \frac{1}{c-t},$$
(9)

for some arbitrary constant c.

(c) Use your result from the previous part to determine the nature of the stability of the equilibrium points.

Solution: Let y_o be such that $y_o > 1$, and assume that a solution y = y(t) to the differential equation in (7) satisfies $y(0) = y_o$. We then obtain from (9) that

$$c = \frac{1}{y_o - 1}.$$
 (10)

Substituting the value for c in (10) into (9) yields the solution

$$y(t) = 1 + \frac{y_o - 1}{1 - (y_o - 1)t}$$
(11)

to the initial value problem

$$\begin{cases} \frac{dy}{dt} = y^2 - 2y + 1; \\ y(0) = y_o, \end{cases}$$
(12)

which ceases to exist at $t = \frac{1}{y_o - 1}$. Therefore, for $y_o > 1$, the solution of the IVP in (12) does not exist for all t > 0. Hence, $\overline{y} = 1$ is unstable. \Box

(d) Find a solution to the IVP $\begin{cases} \frac{dy}{dt} = y^2 - 2y + 1; \\ y(0) = 2, \end{cases}$ and determine its maximal interval of existence.

Solution: Using the formula in (11) derived in the previous part we see that the solution of the IVP in (12) for $y_o = 2$ is given by

$$y(t) = 1 + \frac{1}{1-t}, \quad \text{for } t < 1.$$

Thus, the maximal interval of existence is $(-\infty, 1)$.

4. Solve the initial value problem $\frac{dy}{dt} = y + t^2$, y(0) = 0, and compute $\lim_{t \to \infty} y(t)$. Solution: Rewrite the equation as

$$\frac{dy}{dt} - y = t^2$$

and multiply by the integrating factor e^{-t} to obtain

$$e^{-t}\frac{dy}{dt} - e^{-t}y = t^2 e^{-t},$$

which can be written as

$$\frac{d}{dt}[e^{-t}y] = t^2 e^{-t},$$
(13)

by virtue of the product rule. Integrating on both sides of (13) yields

$$e^{-t}y = \int t^2 e^{-t} dt.$$
 (14)

In order to evaluate the integral on the right–hand side of (14), we use integration by parts.

Let

 $u = t^2$ and $dv = e^{-t} dt;$

so that,

$$du = 2t \ dt$$
 and $v = -e^{-t}$

Then,

$$\int t^2 e^{-t} dt = -t^2 e^{-t} + \int 2t e^{-t} dt.$$
(15)

The right–most integral in (15) can also be evaluated using integration by parts.

$$u = 2t$$
 and $dv = e^{-t} dt;$

so that

$$du = 2 dt$$
 and $v = -e^{-t}$,

and, therefore,

$$\int 2te^{-t} dt = -2te^{-t} + \int 2e^{-t} dt,$$

from which we get that

$$\int 2te^{-t} dt = -2te^{-t} - 2e^{-t} + c, \tag{16}$$

for some constant of integration c. Substituting the result in (16) into (15) then yields

$$\int t^2 e^{-t} dt = -t^2 e^{-t} - 2t e^{-t} - 2e^{-t} + c, \qquad (17)$$

where c is an arbitrary constant. Substituting the result in (17) into the right-hand side of (14) yields

$$e^{-t}y = -(t^2 + 2t + 2)e^{-t} + c \tag{18}$$

Solving for y in (18) we obtain

$$y(t) = -t^2 - 2t - 2 + ce^t, \quad \text{for all } t \in \mathbb{R}.$$
(19)

Using the initial condition, y(0) = 0, in (18) we obtain that -2 + c = 0, we have that c = 2. Thus,

$$y(t) = 2e^t - t^2 - 2t - 2, \quad \text{for all } t \in \mathbb{R}.$$
 (20)

It follows from (20) that $\lim_{t\to\infty} y(t) = +\infty$.

5. Logistic Growth with Harvesting. The following differential equation models the growth of a population of size N = N(t) that is being harvested at a rate proportional to the population density

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right) - EN,\tag{21}$$

where r, K and E are non-negative parameters with r > 0 and K > 0.

Math 31S. Rumbos

(a) Give an interpretation for this model. In particular, give interpretation for the term EN. The parameter E is usually called the harvesting *effort*.

Answer: This equation models a population that grows logistically and that is also being harvested at a rate proportional to the populations density. \Box

(b) Calculate the equilibrium points for the equation (21), and give conditions on the parameters that yield a biologically meaningful equilibrium point. Determine the nature of the stability of that equilibrium point. Sketch possible solutions to the equation in this situation.

Solution: Write

$$f(N) = rN\left(1 - \frac{N}{K}\right) - EN$$
$$= rN\left(1 - \frac{N}{K} - \frac{E}{r}\right)$$
$$= -\frac{r}{K}N\left[N - K\left(1 - \frac{E}{r}\right)\right]$$

We then see that equilibrium points of equation (21) are

$$\overline{N}_1 = 0$$
 and $\overline{N}_2 = K\left(1 - \frac{E}{r}\right)$. (22)

The second equilibrium point is biologically meaningful if $\overline{N}_2 > 0$, and for this to happen we require that E < r; that is, the harvesting effort is less than the intrinsic growth rate.

To determine the nature of the stability of \overline{N}_2 for the case E < r, consider a sketch of the graph of f(N) versus N in Figure 1. Observe from the sketch that $f'(\overline{N}_2) < 0$. It then follows from the principle of linearized stability that \overline{N}_2 is asymptotically stable.

The solid curves in Figure 2 show possible solutions of the equation. \Box

(c) What does the model predict if $E \ge r$?

Solution: If E = r, then

$$\frac{\mathrm{d}N}{\mathrm{d}t} = -\frac{r}{K}N^2 < 0$$

for N > 0. It then follows that N(t) will always be strictly decreasing and so the population will go extinct. In fact, using separation of variables, we

Figure 1: Graph of f(N) versus N

Figure 2: Possible Solutions

obtain that the solution for $N(0) = N_o$ is given by

$$N(t) = \frac{N_o K}{K + N_o r t},$$

which tends to 0 as $t \to \infty$.

On the other hand, if E > r, then

$$\frac{\mathrm{d}N}{\mathrm{d}t} = -\frac{r}{K}N\left[N-K\left(1-\frac{E}{r}\right)\right]$$
$$= -\frac{r}{K}N^2 + KN(r-E)$$
$$< -\frac{r}{K}N^2 < 0,$$

and so again we conclude the N(t) will be always decreasing to 0.