Solutions to Review Problems for Exam \#2

1. Find a solution of the initial value problem $\frac{d y}{d t}=e^{t-y}, \quad y(0)=1$.

Solution: Write the differential equation as

$$
\frac{d y}{d t}=e^{t} e^{-y}
$$

and separate variables to obtain

$$
\int e^{y} d y=\int e^{t} d t
$$

which integrates to

$$
\begin{equation*}
e^{y}=e^{t}+c \tag{1}
\end{equation*}
$$

for arbitrary c. Using the initial condition $y(0)=1$ in (1) yields

$$
e=1+c
$$

from which we get that

$$
\begin{equation*}
c=e-1 . \tag{2}
\end{equation*}
$$

Substituting the value for c in (2) into the equation in (1) yields

$$
e^{y}=e^{t}+e-1
$$

which can be solved for y to obtain

$$
y(t)=\ln \left[e^{t}+e-1\right], \quad \text { for all } t \in \mathbb{R}
$$

2. The temperature in a hot iron decreases at a rate 0.11 times the difference between its present temperature and room temperature ($20^{\circ} \mathrm{C}$).
(a) Write a differential equation for the temperature of the iron.

Solution: Let $u=u(t)$ denote the temperature of the hot iron at time t. Then,

$$
\begin{equation*}
\frac{d u}{d t}=-0.11(u-20) \tag{3}
\end{equation*}
$$

where u is measured in degrees Celsius and t in minutes.
(b) If the initial temperature of the rod is $100^{\circ} \mathrm{C}$, and the time is measured in minutes, how long will it take for the rod to reach a temperature of $25^{\circ} \mathrm{C}$?
Solution: The general solution of the differential equation in (3) is

$$
\begin{equation*}
u(t)=20+c e^{-0.11 t}, \quad \text { for all } t \in \mathbb{R}, \tag{4}
\end{equation*}
$$

for arbitrary constant c.
To find the value of c in (4), we use the initial condition $u(0)=100$ in (4) to obtain the equation

$$
20+c=100
$$

which yields

$$
\begin{equation*}
c=80 \tag{5}
\end{equation*}
$$

Substituting the value of c in (5) into the expression for u in (4), we obtain that

$$
\begin{equation*}
u(t)=20+80 e^{-0.11 t}, \quad \text { for all } t \in \mathbb{R} \tag{6}
\end{equation*}
$$

Next, we find the value of t for which $u(t)=25$, or

$$
20+80 e^{-0.11 t}=25
$$

or

$$
80 e^{-0.11 t}=5
$$

which can be solved for t to yield

$$
t=-\frac{\ln (1 / 16)}{0.11}=\frac{4 \ln 2}{0.11} \doteq 25 \text { minutes. }
$$

Thus, it will take about 25 minutes for the hot iron to reach the temperature or 25 degrees Celsius.
3. Consider the first-order ordinary differential equation

$$
\begin{equation*}
\frac{d y}{d t}=y^{2}-2 y+1 \tag{7}
\end{equation*}
$$

(a) Determine equilibrium points and determine the nature of the stability of the equilibrium solutions by means of the principle of linearized stability, if applicable.
Solution: Put $f(y)=y^{2}-2 y+1$ and write $f(y)=(y-1)^{2}$; so that, the differential equation in (7) has one equilibrium solution; namely,

$$
\bar{y}=1 .
$$

Since $f^{\prime}(y)=2(y-1), f^{\prime}(1)=0$; so that, the principle of linearized stability does not apply in this case.
(b) Use separation of variables to find the general solution of the equation in (7).

Solution: Use separation of variables to solve the equation

$$
\frac{d y}{d t}=(y-1)^{2}
$$

We obtain

$$
\int \frac{1}{(y-1)^{2}} d y=\int d t
$$

which yields

$$
\begin{equation*}
-\frac{1}{y-1}=t+c_{1} \tag{8}
\end{equation*}
$$

for some arbitrary constant c_{1}. Multiply on both sides of the equation in (8) by -1 and solve for y to obtain

$$
\begin{equation*}
y(t)=1+\frac{1}{c-t}, \tag{9}
\end{equation*}
$$

for some arbitrary constant c.
(c) Use your result from the previous part to determine the nature of the stability of the equilibrium points.
Solution: Let y_{o} be such that $y_{o}>1$, and assume that a solution $y=y(t)$ to the differential equation in (7) satisfies $y(0)=y_{o}$. We then obtain from (9) that

$$
\begin{equation*}
c=\frac{1}{y_{o}-1} \tag{10}
\end{equation*}
$$

Substituting the value for c in (10) into (9) yields the solution

$$
\begin{equation*}
y(t)=1+\frac{y_{o}-1}{1-\left(y_{o}-1\right) t} \tag{11}
\end{equation*}
$$

to the initial value problem

$$
\left\{\begin{align*}
\frac{d y}{d t} & =y^{2}-2 y+1 \tag{12}\\
y(0) & =y_{o}
\end{align*}\right.
$$

which ceases to exist at $t=\frac{1}{y_{o}-1}$. Therefore, for $y_{o}>1$, the solution of the IVP in (12) does not exist for all $t>0$. Hence, $\bar{y}=1$ is unstable.
(d) Find a solution to the IVP $\left\{\begin{aligned} \frac{d y}{d t} & =y^{2}-2 y+1 ; \\ y(0) & =2,\end{aligned}\right.$ and determine its maximal interval of existence.
Solution: Using the formula in (11) derived in the previous part we see that the solution of the IVP in (12) for $y_{o}=2$ is given by

$$
y(t)=1+\frac{1}{1-t}, \quad \text { for } t<1
$$

Thus, the maximal interval of existence is $(-\infty, 1)$.
4. Solve the initial value problem $\frac{d y}{d t}=y+t^{2}, \quad y(0)=0$, and compute $\lim _{t \rightarrow \infty} y(t)$.

Solution: Rewrite the equation as

$$
\frac{d y}{d t}-y=t^{2}
$$

and multiply by the integrating factor e^{-t} to obtain

$$
e^{-t} \frac{d y}{d t}-e^{-t} y=t^{2} e^{-t}
$$

which can be written as

$$
\begin{equation*}
\frac{d}{d t}\left[e^{-t} y\right]=t^{2} e^{-t} \tag{13}
\end{equation*}
$$

by virtue of the product rule. Integrating on both sides of (13) yields

$$
\begin{equation*}
e^{-t} y=\int t^{2} e^{-t} d t \tag{14}
\end{equation*}
$$

In order to evaluate the integral on the right-hand side of (14), we use integration by parts.
Let

$$
u=t^{2} \quad \text { and } \quad d v=e^{-t} d t
$$

so that,

$$
d u=2 t d t \quad \text { and } \quad v=-e^{-t}
$$

Then,

$$
\begin{equation*}
\int t^{2} e^{-t} d t=-t^{2} e^{-t}+\int 2 t e^{-t} d t \tag{15}
\end{equation*}
$$

The right-most integral in (15) can also be evaluated using integration by parts.

$$
u=2 t \quad \text { and } \quad d v=e^{-t} d t
$$

so that

$$
d u=2 d t \quad \text { and } \quad v=-e^{-t}
$$

and, therefore,

$$
\int 2 t e^{-t} d t=-2 t e^{-t}+\int 2 e^{-t} d t
$$

from which we get that

$$
\begin{equation*}
\int 2 t e^{-t} d t=-2 t e^{-t}-2 e^{-t}+c \tag{16}
\end{equation*}
$$

for some constant of integration c. Substituting the result in (16) into (15) then yields

$$
\begin{equation*}
\int t^{2} e^{-t} d t=-t^{2} e^{-t}-2 t e^{-t}-2 e^{-t}+c \tag{17}
\end{equation*}
$$

where c is an arbitrary constant. Substituting the result in (17) into the righthand side of (14) yields

$$
\begin{equation*}
e^{-t} y=-\left(t^{2}+2 t+2\right) e^{-t}+c \tag{18}
\end{equation*}
$$

Solving for y in (18) we obtain

$$
\begin{equation*}
y(t)=-t^{2}-2 t-2+c e^{t}, \quad \text { for all } t \in \mathbb{R} \tag{19}
\end{equation*}
$$

Using the initial condition, $y(0)=0$, in (18) we obtain that $-2+c=0$, we have that $c=2$. Thus,

$$
\begin{equation*}
y(t)=2 e^{t}-t^{2}-2 t-2, \quad \text { for all } t \in \mathbb{R} \tag{20}
\end{equation*}
$$

It follows from (20) that $\lim _{t \rightarrow \infty} y(t)=+\infty$.
5. Logistic Growth with Harvesting. The following differential equation models the growth of a population of size $N=N(t)$ that is being harvested at a rate proportional to the population density

$$
\begin{equation*}
\frac{d N}{d t}=r N\left(1-\frac{N}{K}\right)-E N \tag{21}
\end{equation*}
$$

where r, K and E are non-negative parameters with $r>0$ and $K>0$.
(a) Give an interpretation for this model. In particular, give interpretation for the term $E N$. The parameter E is usually called the harvesting effort.

Answer: This equation models a population that grows logistically and that is also being harvested at a rate proportional to the populations density.
(b) Calculate the equilibrium points for the equation (21), and give conditions on the parameters that yield a biologically meaningful equilibrium point. Determine the nature of the stability of that equilibrium point. Sketch possible solutions to the equation in this situation.
Solution: Write

$$
\begin{aligned}
f(N) & =r N\left(1-\frac{N}{K}\right)-E N \\
& =r N\left(1-\frac{N}{K}-\frac{E}{r}\right) \\
& =-\frac{r}{K} N\left[N-K\left(1-\frac{E}{r}\right)\right]
\end{aligned}
$$

We then see that equilibrium points of equation (21) are

$$
\begin{equation*}
\bar{N}_{1}=0 \quad \text { and } \quad \bar{N}_{2}=K\left(1-\frac{E}{r}\right) . \tag{22}
\end{equation*}
$$

The second equilibrium point is biologically meaningful if $\bar{N}_{2}>0$, and for this to happen we require that $E<r$; that is, the harvesting effort is less than the intrinsic growth rate.
To determine the nature of the stability of \bar{N}_{2} for the case $E<r$, consider a sketch of the graph of $f(N)$ versus N in Figure 1. Observe from the sketch that $f^{\prime}\left(\bar{N}_{2}\right)<0$. It then follows from the principle of linearized stability that \bar{N}_{2} is asymptotically stable.
The solid curves in Figure 2 show possible solutions of the equation.
(c) What does the model predict if $E \geqslant r$?

Solution: If $E=r$, then

$$
\frac{\mathrm{d} N}{\mathrm{~d} t}=-\frac{r}{K} N^{2}<0
$$

for $N>0$. It then follows that $N(t)$ will always be strictly decreasing and so the population will go extinct. In fact, using separation of variables, we

Figure 1: Graph of $f(N)$ versus N

Figure 2: Possible Solutions
obtain that the solution for $N(0)=N_{o}$ is given by

$$
N(t)=\frac{N_{o} K}{K+N_{o} r t},
$$

which tends to 0 as $t \rightarrow \infty$.
On the other hand, if $E>r$, then

$$
\begin{aligned}
\frac{\mathrm{d} N}{\mathrm{~d} t} & =-\frac{r}{K} N\left[N-K\left(1-\frac{E}{r}\right)\right] \\
& =-\frac{r}{K} N^{2}+K N(r-E) \\
& <-\frac{r}{K} N^{2}<0
\end{aligned}
$$

and so again we conclude the $N(t)$ will be always decreasing to 0 .

