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Solutions to Review Problems for Exam #2

1. Find a solution of the initial value problem
dy

dt
= et−y, y(0) = 1.

Solution: Write the differential equation as

dy

dt
= ete−y,

and separate variables to obtain∫
ey dy =

∫
et dt,

which integrates to
ey = et + c, (1)

for arbitrary c. Using the initial condition y(0) = 1 in (1) yields

e = 1 + c,

from which we get that
c = e− 1. (2)

Substituting the value for c in (2) into the equation in (1) yields

ey = et + e− 1,

which can be solved for y to obtain

y(t) = ln[et + e− 1], for all t ∈ R.

�

2. The temperature in a hot iron decreases at a rate 0.11 times the difference
between its present temperature and room temperature (20◦ C).

(a) Write a differential equation for the temperature of the iron.

Solution: Let u = u(t) denote the temperature of the hot iron at time t.
Then,

du

dt
= −0.11(u− 20), (3)

where u is measured in degrees Celsius and t in minutes. �
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(b) If the initial temperature of the rod is 100◦ C, and the time is measured in
minutes, how long will it take for the rod to reach a temperature of 25◦C?

Solution: The general solution of the differential equation in (3) is

u(t) = 20 + ce−0.11 t, for all t ∈ R, (4)

for arbitrary constant c.

To find the value of c in (4), we use the initial condition u(0) = 100 in (4)
to obtain the equation

20 + c = 100,

which yields
c = 80. (5)

Substituting the value of c in (5) into the expression for u in (4), we obtain
that

u(t) = 20 + 80e−0.11 t, for all t ∈ R. (6)

Next, we find the value of t for which u(t) = 25, or

20 + 80e−0.11 t = 25,

or
80e−0.11 t = 5,

which can be solved for t to yield

t = − ln(1/16)

0.11
=

4 ln 2

0.11
=̇ 25 minutes.

Thus, it will take about 25 minutes for the hot iron to reach the tempera-
ture or 25 degrees Celsius. �

3. Consider the first–order ordinary differential equation

dy

dt
= y2 − 2y + 1. (7)

(a) Determine equilibrium points and determine the nature of the stability of
the equilibrium solutions by means of the principle of linearized stability,
if applicable.

Solution: Put f(y) = y2 − 2y + 1 and write f(y) = (y − 1)2; so that, the
differential equation in (7) has one equilibrium solution; namely,

y = 1.

Since f ′(y) = 2(y − 1), f ′(1) = 0; so that, the principle of linearized
stability does not apply in this case. �
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(b) Use separation of variables to find the general solution of the equation in
(7).

Solution: Use separation of variables to solve the equation

dy

dt
= (y − 1)2.

We obtain ∫
1

(y − 1)2
dy =

∫
dt,

which yields

− 1

y − 1
= t + c1, (8)

for some arbitrary constant c1. Multiply on both sides of the equation in
(8) by −1 and solve for y to obtain

y(t) = 1 +
1

c− t
, (9)

for some arbitrary constant c. �

(c) Use your result from the previous part to determine the nature of the
stability of the equilibrium points.

Solution: Let yo be such that yo > 1, and assume that a solution y = y(t)
to the differential equation in (7) satisfies y(0) = yo. We then obtain from
(9) that

c =
1

yo − 1
. (10)

Substituting the value for c in (10) into (9) yields the solution

y(t) = 1 +
yo − 1

1− (yo − 1)t
(11)

to the initial value problem{
dy

dt
= y2 − 2y + 1;

y(0) = yo,
(12)

which ceases to exist at t =
1

yo − 1
. Therefore, for yo > 1, the solution of

the IVP in (12) does not exist for all t > 0. Hence, y = 1 is unstable. �
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(d) Find a solution to the IVP

{
dy

dt
= y2 − 2y + 1;

y(0) = 2,
and determine its

maximal interval of existence.

Solution: Using the formula in (11) derived in the previous part we see
that the solution of the IVP in (12) for yo = 2 is given by

y(t) = 1 +
1

1− t
, for t < 1.

Thus, the maximal interval of existence is (−∞, 1). �

4. Solve the initial value problem
dy

dt
= y + t2, y(0) = 0, and compute lim

t→∞
y(t).

Solution: Rewrite the equation as

dy

dt
− y = t2

and multiply by the integrating factor e−t to obtain

e−t
dy

dt
− e−ty = t2e−t,

which can be written as
d

dt
[e−ty] = t2e−t, (13)

by virtue of the product rule. Integrating on both sides of (13) yields

e−ty =

∫
t2e−t dt. (14)

In order to evaluate the integral on the right–hand side of (14), we use integra-
tion by parts.

Let
u = t2 and dv = e−t dt;

so that,
du = 2t dt and v = −e−t.

Then, ∫
t2e−t dt = −t2e−t +

∫
2te−t dt. (15)

The right–most integral in (15) can also be evaluated using integration by parts.



Math 31S. Rumbos Fall 2016 5

u = 2t and dv = e−t dt;

so that
du = 2 dt and v = −e−t,

and, therefore, ∫
2te−t dt = −2te−t +

∫
2e−t dt,

from which we get that∫
2te−t dt = −2te−t − 2e−t + c, (16)

for some constant of integration c. Substituting the result in (16) into (15) then
yields ∫

t2e−t dt = −t2e−t − 2te−t − 2e−t + c, (17)

where c is an arbitrary constant. Substituting the result in (17) into the right–
hand side of (14) yields

e−ty = −(t2 + 2t + 2)e−t + c (18)

Solving for y in (18) we obtain

y(t) = −t2 − 2t− 2 + cet, for all t ∈ R. (19)

Using the initial condition, y(0) = 0, in (18) we obtain that −2 + c = 0, we
have that c = 2. Thus,

y(t) = 2et − t2 − 2t− 2, for all t ∈ R. (20)

It follows from (20) that lim
t→∞

y(t) = +∞. �

5. Logistic Growth with Harvesting. The following differential equation mod-
els the growth of a population of size N = N(t) that is being harvested at a
rate proportional to the population density

dN

dt
= rN

(
1− N

K

)
− EN, (21)

where r, K and E are non–negative parameters with r > 0 and K > 0.
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(a) Give an interpretation for this model. In particular, give interpretation for
the term EN . The parameter E is usually called the harvesting effort.

Answer: This equation models a population that grows logisti-
cally and that is also being harvested at a rate proportional to the
populations density. �

(b) Calculate the equilibrium points for the equation (21), and give conditions
on the parameters that yield a biologically meaningful equilibrium point.
Determine the nature of the stability of that equilibrium point. Sketch
possible solutions to the equation in this situation.

Solution: Write

f(N) = rN

(
1− N

K

)
− EN

= rN

(
1− N

K
− E

r

)

= − r

K
N

[
N −K

(
1− E

r

)]
.

We then see that equilibrium points of equation (21) are

N1 = 0 and N2 = K

(
1− E

r

)
. (22)

The second equilibrium point is biologically meaningful if N2 > 0, and for
this to happen we require that E < r; that is, the harvesting effort is less
than the intrinsic growth rate.

To determine the nature of the stability of N2 for the case E < r, consider
a sketch of the graph of f(N) versus N in Figure 1. Observe from the
sketch that f ′(N2) < 0. It then follows from the principle of linearized
stability that N2 is asymptotically stable.

The solid curves in Figure 2 show possible solutions of the equation. �

(c) What does the model predict if E > r?

Solution: If E = r, then

dN

dt
= − r

K
N2 < 0

for N > 0. It then follows that N(t) will always be strictly decreasing and
so the population will go extinct. In fact, using separation of variables, we
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Figure 1: Graph of f(N) versus N

t

N

N2

K

Figure 2: Possible Solutions

obtain that the solution for N(0) = No is given by

N(t) =
NoK

K + Nort
,

which tends to 0 as t→∞.

On the other hand, if E > r, then

dN

dt
= − r

K
N

[
N −K

(
1− E

r

)]

= − r

K
N2 + KN(r − E)

< − r

K
N2 < 0,

and so again we conclude the N(t) will be always decreasing to 0. �


