Assignment \#3

Due on Friday, September 15, 2017
Read Section 3.4 on Defining a Probability Function in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 1.5 on The Definition of Probability in DeGroot and Schervish.
Read Section 1.6 on Finite Sample Spaces in DeGroot and Schervish.
Do the following problems

1. Consider two events A and B such that $\operatorname{Pr}(A)=1 / 3$ and $\operatorname{Pr}(B)=1 / 2$. Determine the value of $\operatorname{Pr}\left(B \cap A^{c}\right)$ for each of the following conditions:
(a) A and B are disjoint;
(b) $A \subseteq B$;
(c) $\operatorname{Pr}(A \cap B)=1 / 8$.
2. Consider two events A and B with $\operatorname{Pr}(A)=0.4$ and $\operatorname{Pr}(B)=0.7$. Determine the maximum and minimum possible values for $\operatorname{Pr}(A \cap B)$ and the conditions under which each of these values is attained.
3. Prove that for every two events A and B, the probability that exactly one of the two events will occur is given by the expression

$$
\operatorname{Pr}(A)+\operatorname{Pr}(B)-2 \operatorname{Pr}(A \cap B)
$$

4. Let A and B be elements in a σ-field \mathcal{B} on a sample space \mathcal{C}, and let Pr denote a probability function defined on \mathcal{B}. Recall that $A \backslash B=\{x \in A \mid x \notin B\}$. Prove that if $B \subseteq A$, then

$$
\operatorname{Pr}(A \backslash B)=\operatorname{Pr}(A)-\operatorname{Pr}(B)
$$

5. Let $(\mathcal{C}, \mathcal{B}, \operatorname{Pr})$ denote a probability space, and B an event in \mathcal{B} with $\operatorname{Pr}(B)>0$. Let

$$
\mathcal{B}_{B}=\{D \subset \mathcal{C} \mid D=E \cap B \text { for some } E \in \mathcal{B}\}
$$

We have already seen that \mathcal{B}_{B} is a σ-field.
Let $P_{B}: \mathcal{B}_{B} \rightarrow \mathbb{R}$ be defined by $P_{B}(A)=\frac{\operatorname{Pr}(A)}{\operatorname{Pr}(B)}$ for all $A \in \mathcal{B}_{B}$. Verify that $\left(B, \mathcal{B}_{B}, P_{B}\right)$ is a probability space; that is, show that $P_{B}: \mathcal{B}_{B} \rightarrow \mathbb{R}$ is a probability function.

