Assignment \#8

Due on Friday, October 13, 2017
Read Section 4.1, Definition of Random Variable, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Section 4.2, Distribution Functions, in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 3.1 on Random Variables and Discrete Distributions in DeGroot and Schervish.

Read Section 3.2 on Continuous Distributions in DeGroot and Schervish.
Do the following problems

1. Suppose the pdf of a random variable X is as follows:

$$
f(x)= \begin{cases}\frac{4}{3}\left(1-x^{3}\right) & \text { for } 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

Sketch the pdf and determine the values of the following probabilities:
(a) $\operatorname{Pr}\left(X<\frac{1}{2}\right)$
(b) $\operatorname{Pr}\left(\frac{1}{4}<X<\frac{3}{4}\right)$
(c) $\operatorname{Pr}\left(X>\frac{1}{3}\right)$
2. Suppose the pdf of a random variable is as follows:

$$
f(x)= \begin{cases}c x^{2} & \text { for } 1 \leqslant x \leqslant 2 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the value of c and sketch the pdf.
(b) Find the value of $\operatorname{Pr}(X>3 / 2)$.
3. Let $\mathcal{C}=\{x \in \mathbb{R} \mid 0<x<\infty\}$ and \mathcal{B} denote the Borel sets in \mathcal{C}. Let the pdf of a random variable, X, defined on \mathcal{C} be given by

$$
f_{X}(x)=e^{-x} \quad \text { for all } x>0
$$

Let $E_{k}=\{x \in \mathcal{C} \mid 2-1 / k<x \leqslant 3\}$ for $k=1,2,3, \ldots$
Compute $\operatorname{Pr}\left(E_{n}\right)$ for all n, and $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(E_{n}\right)$.
4. A point is selected at random form the sample space $\mathcal{C}=\{x \in \mathbb{R} \mid 0<x<10\}$. For any Borel subset $E \subseteq \mathcal{C}$ the probability of E is defined to be

$$
\operatorname{Pr}(E)=\int_{E} \frac{1}{10} \mathrm{~d} x
$$

Define $X: \mathcal{C} \rightarrow \mathbb{R}$ to be

$$
X(x)=x^{2} \quad \text { for all } x \in \mathcal{C} .
$$

Find the cumulative distribution function and the probability density function of X.
5. A median of the distribution of a random variable X is a value m for x such that

$$
\operatorname{Pr}(X<m) \leqslant \frac{1}{2} \quad \text { and } \quad \operatorname{Pr}(X \leqslant m) \geqslant \frac{1}{2}
$$

If there is only one such value m, it is called the median of the distribution. Suppose the pdf of a random variable X is given by the function

$$
f(x)= \begin{cases}\frac{1}{8} x & \text { for } 0 \leqslant x \leqslant 4 \\ 0 & \text { otherwise }\end{cases}
$$

Compute a median for the distribution of X. Is it the median of the distribution?

