Assignment \#1

Due on Friday, September 8, 2017
Read Chapter 2 on Variational Problems, in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Do the following problems

1. Let U denote an open subset of \mathbb{R}^{n} and $f: U \rightarrow \mathbb{R}$ be a differentiable function. Prove that if f attains a local maximum or minimum at some point $u_{o} \in U$, then $\nabla f\left(u_{o}\right)=0$, where ∇f denotes the gradient of f.
2. A set $K \subseteq \mathbb{R}^{n}$ is said to be convex iff for any two points x, y in K, the line segment from x to y is contained in K. Let U denote an open and convex subset of \mathbb{R}^{n} and $f: U \rightarrow \mathbb{R}$ be a C^{1} function. Let $u, v \in U$ and put $g(t)=$ $f(t v+(1-t) u)$ for all $t \in[0,1]$. Explain why $g:[0,1] \rightarrow \mathbb{R}$ is well defined. Show that g is differentiable in $(0,1)$ and compute $g^{\prime}(t)$ for all $t \in(0,1)$. What is $g^{\prime}(0)$?
3. Let $\mathcal{F}[a, b]$ denote the set of all real valued functions defined on the closed interval $[a, b]$. Verify that $\mathcal{F}[a, b]$ is a vector space (or linear space) under the operations of pointwise addition and scalar multiplication.
4. Let $C[a, b]$ denote the set of functions $y:[a, b] \rightarrow \mathbb{R}$ that are continuous on $[a, b]$.
(a) Show that $C[a, b]$ is a subspace of $\mathcal{F}[a, b]$.
(b) Let $C_{o}[a, b]=\{y \in C[a, b] \mid y(a)=y(b)=0\}$. Show that $C_{o}[a, b]$ is a subspace of $C[a, b]$.
(c) Let $C^{1}[a, b]$ denote the set of functions $y:[a, b] \rightarrow \mathbb{R}$ which are continuous on $[a, b]$, differentiable on (a, b), and such that the derivatives y^{\prime} are continuous on (a, b). Show that $C^{1}[a, b]$ is a subspace of $C[a, b]$.
5. Verify that the following define norms in $C[a, b]$.
(a) $\|y\|_{1}=\int_{a}^{b}|y(t)| \mathrm{d} t \quad$ for all $y \in C[a, b]$.
(b) $\|y\|_{2}=\left(\int_{a}^{b}|y(t)|^{2} \mathrm{~d} t\right)^{1 / 2}$ for all $y \in C[a, b]$.
