Assignment \#5

Due on Friday, October 6, 2017
Read Section 4.2, A Minimization Problem, in the class lecture notes at http://pages.pomona.edu/~ajr04747/
Read Section 4.3, Convex Functionals, in the class lecture notes at http://pages. pomona.edu/~ajr04747/

Background and Definitions

Convex Functionals.

Let V denote a normed linear space, V_{o} a nontrivial subspace of V, and \mathcal{A} a given nonempty subset of V. Let $J: V \rightarrow \mathbb{R}$ be a functional defined on V. Suppose that J is Gâteaux differentiable at every $u \in \mathcal{A}$ in any direction $v \in V_{o}$. The functional J is said to be convex on \mathcal{A} if

$$
J(u+v) \geqslant J(u)+d J(u ; v)
$$

for all $u \in \mathcal{A}$ and $v \in V_{o}$ such that $u+v \in \mathcal{A}$.
A Gâteaux differentiable functional $J: V \rightarrow \mathbb{R}$ is said to be strictly convex in \mathcal{A} if it is convex in \mathcal{A}, and

$$
J(u+v)=J(u)+d J(u ; v), \text { for } u \in \mathcal{A}, v \in V_{o} \text { with } u+v \in \mathcal{A}, \text { iff } v=0
$$

Do the following problems

1. Let Ω denote an open subset of \mathbb{R}^{n} and $u: \bar{\Omega} \rightarrow \mathbb{R}$ a continuous function. Suppose also that $u(x) \geqslant 0$ for all $x \in \Omega$ and that

$$
\int_{\Omega} u(x) d x=0 .
$$

Show that $u(x)=0$ for all $x \in \bar{\Omega}$
2. Let U denote an open subset of \mathbb{R}^{n}. We say that U is path connected if and only if for any two points x_{o} and x_{1} in U, there exists a differentiable path $\sigma:[a, b] \rightarrow U$ such that

$$
\sigma(0)=x_{o} \quad \text { and } \quad \sigma(1)=x_{1}
$$

Let $v \in C^{1}(U, \mathbb{R})$, where U is path connected. Suppose that

$$
\nabla v(x)=0, \quad \text { for all } x \in U .
$$

Show that v must be constant in U.
3. Use the Cauchy-Schwarz inequality in \mathbb{R}^{2} applied to the vectors $\vec{A}=(1, z)$ and $\vec{B}=(1, z+w)$ to deduce the inequality

$$
\sqrt{1+(z+w)^{2}} \geqslant \sqrt{1+z^{2}}+\frac{z w}{\sqrt{1+z^{2}}},
$$

with equality if and only if $w=0$.
Use this fact to show that the arc-length functional,

$$
J(y)=\int_{a}^{b} \sqrt{1+\left(y^{\prime}(x)\right)^{2}} d x, \quad \text { for all } y \in C^{1}([a, b], \mathbb{R})
$$

is strictly convex.
4. Let $V=C([a, b], \mathbb{R})$ and define $J: V \rightarrow \mathbb{R}$ by

$$
J(y)=\int_{a}^{b}\left(\sin ^{3} x+y^{2}(x)\right) \mathrm{d} x \quad \text { for all } y \in V
$$

(a) Show that J is Gateaux differentiable and compute $d J(y ; v)$ for all $y, v \in V$.
(b) Show that J is strictly convex.
5. Let V be a normed linear space and $L: V \rightarrow \mathbb{R}$ be a linear functional. Show that J is convex but not strictly convex.

