1

Assignment #5

Due on Friday, October 6, 2017

Read Section 4.2, A Minimization Problem, in the class lecture notes at

http://pages.pomona.edu/~ajr04747/

Read Section 4.3, Convex Functionals, in the class lecture notes at

http://pages.pomona.edu/~ajr04747/

Background and Definitions

Convex Functionals.

Let V denote a normed linear space, V_o a nontrivial subspace of V, and \mathcal{A} a given nonempty subset of V. Let $J \colon V \to \mathbb{R}$ be a functional defined on V. Suppose that J is Gâteaux differentiable at every $u \in \mathcal{A}$ in any direction $v \in V_o$. The functional J is said to be **convex** on \mathcal{A} if

$$J(u+v) \geqslant J(u) + dJ(u;v)$$

for all $u \in \mathcal{A}$ and $v \in V_0$ such that $u + v \in \mathcal{A}$.

A Gâteaux differentiable functional $J: V \to \mathbb{R}$ is said to be **strictly convex** in \mathcal{A} if it is convex in \mathcal{A} , and

$$J(u+v) = J(u) + dJ(u;v)$$
, for $u \in \mathcal{A}, v \in V_o$ with $u+v \in \mathcal{A}$, iff $v=0$.

Do the following problems

1. Let Ω denote an open subset of \mathbb{R}^n and $u \colon \overline{\Omega} \to \mathbb{R}$ a continuous function. Suppose also that $u(x) \geq 0$ for all $x \in \Omega$ and that

$$\int_{\Omega} u(x) \ dx = 0.$$

Show that u(x) = 0 for all $x \in \overline{\Omega}$

2. Let U denote an open subset of \mathbb{R}^n . We say that U is **path connected** if and only if for any two points x_o and x_1 in U, there exists a differentiable path $\sigma: [a,b] \to U$ such that

$$\sigma(0) = x_o$$
 and $\sigma(1) = x_1$.

Let $v \in C^1(U, \mathbb{R})$, where U is path connected. Suppose that

$$\nabla v(x) = 0$$
, for all $x \in U$.

Show that v must be constant in U.

2

$$\sqrt{1+(z+w)^2} \geqslant \sqrt{1+z^2} + \frac{zw}{\sqrt{1+z^2}},$$

with equality if and only if w = 0.

Use this fact to show that the arc-length functional,

$$J(y) = \int_a^b \sqrt{1 + (y'(x))^2} \, dx$$
, for all $y \in C^1([a, b], \mathbb{R})$,

is strictly convex.

4. Let $V = C([a, b], \mathbb{R})$ and define $J: V \to \mathbb{R}$ by

$$J(y) = \int_a^b (\sin^3 x + y^2(x)) \, dx \quad \text{for all } y \in V.$$

- (a) Show that J is Gateaux differentiable and compute dJ(y;v) for all $y,v\in V$.
- (b) Show that J is strictly convex.
- 5. Let V be a normed linear space and $L\colon V\to \mathbb{R}$ be a linear functional. Show that J is convex but not strictly convex.