Assignment \#7

Due on Friday, November 10, 2017
Read Chapter 5, Optimization Problems with Constraints, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Chapter 4, Isoperimetric Problems, in Calculus of Variations by Robert Weinstock.
Do the following problems

1. Let $V=C^{1}\left([a, b], \mathbb{R}^{2}\right)$; so that, the elements of V are vector-valued functions

$$
(x, y):[a, b] \rightarrow \mathbb{R}^{2},
$$

whose values are denoted by $(x(t), y(t))$, for $t \in[a, b]$, where the functions $x:[a, b] \rightarrow \mathbb{R}$ and $y:[a, b] \rightarrow \mathbb{R}$ are differentiable functions of $t \in(a, b)$, with continuous derivatives \dot{x} and \dot{y} (the dot on top of a variable name indicates derivative with respect to t). We denote by V_{o} the space of vector valued functions $\left(\eta_{1}, \eta_{2}\right) \in V$ such that

$$
\eta_{1}(a)=\eta_{1}(b)=\eta_{2}(a)=\eta_{2}(b)=0 .
$$

(a) Show that V is a vector space.
(b) Show that V_{o} is a subspace of V
2. Let V be as in Problem 1. For $(x, y) \in V$, define

$$
\|(x, y)\|=\max _{a \leqslant t \leqslant b}|x(t)|+\max _{a \leqslant t \leqslant b}|y(t)|+\max _{a \leqslant t \leqslant b}|\dot{x}(t)|+\max _{a \leqslant t \leqslant b}|\dot{y}(t)| .
$$

Verify that $\|(\cdot, \cdot)\|$ defines a norm in V.
3. Let V and V_{o} be as in Problem 1. Consider a function $F:[a, b] \times \mathbb{R}^{4} \rightarrow \mathbb{R}$ whose values are denoted by $F(t, x, y, p, q)$ for $t \in[a, b]$ and real variables x, y, p and q. We assume that the F has partial derivatives

$$
F_{x}(t, x, y, p, q), F_{y}(t, x, y, p, q), F_{p}(t, x, y, p, q) \text { and } F_{q}(t, x, y, p, q),
$$

which are assumed to be continuous on $[a, b] \times \mathbb{R}^{4}$.
Define the functional $J: V \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
J((x, y))=\int_{a}^{b} F(t, x(t), y(t), \dot{x}(t), \dot{y}(t)) d t, \quad \text { for all }(x, y) \in V \tag{1}
\end{equation*}
$$

For $(x, y) \in V$ and $\left(\eta_{1}, \eta_{2}\right) \in V_{o}$, define $g: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
g(s)=J\left((x, y)+s\left(\left(\eta_{1}, \eta_{2}\right)\right)=J\left(\left(x+s \eta_{1}, y+s \eta_{2}\right)\right), \quad \text { for all } s \in \mathbb{R} .\right.
$$

(a) Show that $g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and compute $g^{\prime}(s)$ for all $s \in \mathbb{R}$.
(b) Deduce that $J: V \rightarrow \mathbb{R}$ is Gâteaux differentiable at every $(x, y) \in V$ in the direction of $\left(\eta_{1}, \eta_{2}\right) \in V_{o}$, and compute $d J\left((x, y) ;\left(\eta_{1}, \eta_{2}\right)\right)$.
4. Let V and V_{o} be as in Problem 1 and $J: V \rightarrow \mathbb{R}$ as in Problem 3. Define the set

$$
\mathcal{A}=\left\{(x, y) \in V \mid x(a)=x_{o}, x(b)=x_{1}, y(a)=y_{o}, \text { and } y(b)=y_{1}\right\},
$$

where x_{o}, x_{1}, y_{o} and y_{1} are given real numbers.
Assume that $(x, y) \in \mathcal{A}$ is an optimizer of J over the class \mathcal{A}.
(a) Show that

$$
d J\left((x, y) ;\left(\eta_{1}, \eta_{2}\right)\right)=0, \quad \text { for all }\left(\eta_{1}, \eta_{2}\right) \in V_{o} .
$$

(b) Show that (x, y) must be solution of the system of equations

$$
\left\{\begin{aligned}
\frac{d}{d t}\left[F_{p}(t, x, y, \dot{x}, \dot{y})\right] & =F_{x}(t, x, y, \dot{x}, \dot{y}) ; \\
\frac{d}{d t}\left[F_{q}(t, x, y, \dot{x}, \dot{y})\right] & =F_{y}(t, x, y, \dot{x}, \dot{y}) .
\end{aligned}\right.
$$

5. Let $V=C^{1}\left([0,1], \mathbb{R}^{2}\right), V_{o}=C_{o}^{1}\left([0,1], \mathbb{R}^{2}\right)$ and

$$
\mathcal{A}=\left\{(x, y) \in V \mid x(0)=x_{o}, x(1)=x_{1}, y(0)=y_{o}, \text { and } y(1)=y_{1}\right\}
$$

where x_{o}, x_{1}, y_{o} and y_{1} are given real numbers.
Define the functional $J: V \rightarrow \mathbb{R}$ by

$$
J((x, y))=\int_{0}^{1} \sqrt{(\dot{x}(t))^{2}+(\dot{y}(t))^{2}} d t, \quad \text { for all }(x, y) \in V
$$

Consider the optimization problem: Find $(x, y) \in \mathcal{A}$ such that

$$
J((x, y)) \leqslant J(u, v), \quad \text { for all }(u, v) \in \mathcal{A}
$$

(a) Give necessary conditions for $(x, y) \in \mathcal{A}$ to be a solution of the optimization problem.
(b) Give a candidate $(x, y) \in \mathcal{A}$ for a solution of the optimization problem. Give a geometric interpretation of your result.

