Assignment #7

Due on Friday, November 10, 2017

Read Chapter 5, *Optimization Problems with Constraints*, in the class lecture notes at http://pages.pomona.edu/~ajr04747/

Read Chapter 4, *Isoperimetric Problems*, in *Calculus of Variations* by Robert Weinstock. **Do** the following problems

1. Let $V = C^1([a, b], \mathbb{R}^2)$; so that, the elements of V are vector-valued functions

$$(x,y)\colon [a,b]\to \mathbb{R}^2,$$

whose values are denoted by (x(t), y(t)), for $t \in [a, b]$, where the functions $x : [a, b] \to \mathbb{R}$ and $y : [a, b] \to \mathbb{R}$ are differentiable functions of $t \in (a, b)$, with continuous derivatives \dot{x} and \dot{y} (the dot on top of a variable name indicates derivative with respect to t). We denote by V_o the space of vector valued functions $(\eta_1, \eta_2) \in V$ such that

$$\eta_1(a) = \eta_1(b) = \eta_2(a) = \eta_2(b) = 0.$$

- (a) Show that V is a vector space.
- (b) Show that V_o is a subspace of V
- 2. Let V be as in Problem 1. For $(x, y) \in V$, define

$$\|(x,y)\| = \max_{a\leqslant t\leqslant b} |x(t)| + \max_{a\leqslant t\leqslant b} |y(t)| + \max_{a\leqslant t\leqslant b} |\dot{x}(t)| + \max_{a\leqslant t\leqslant b} |\dot{y}(t)|.$$

Verify that $\|(\cdot, \cdot)\|$ defines a norm in V.

3. Let V and V_o be as in Problem 1. Consider a function $F: [a, b] \times \mathbb{R}^4 \to \mathbb{R}$ whose values are denoted by F(t, x, y, p, q) for $t \in [a, b]$ and real variables x, y, p and q. We assume that the F has partial derivatives

$$F_x(t, x, y, p, q), F_y(t, x, y, p, q), F_p(t, x, y, p, q) \text{ and } F_q(t, x, y, p, q),$$

which are assumed to be continuous on $[a, b] \times \mathbb{R}^4$. Define the functional $J: V \to \mathbb{R}$ by

$$J((x,y)) = \int_{a}^{b} F(t,x(t),y(t),\dot{x}(t),\dot{y}(t)) \, dt, \quad \text{for all } (x,y) \in V.$$
(1)

For $(x, y) \in V$ and $(\eta_1, \eta_2) \in V_o$, define $g \colon \mathbb{R} \to \mathbb{R}$ by

$$g(s) = J((x, y) + s((\eta_1, \eta_2)) = J((x + s\eta_1, y + s\eta_2)),$$
 for all $s \in \mathbb{R}$.

- (a) Show that $g: \mathbb{R} \to \mathbb{R}$ is differentiable and compute g'(s) for all $s \in \mathbb{R}$.
- (b) Deduce that $J: V \to \mathbb{R}$ is Gâteaux differentiable at every $(x, y) \in V$ in the direction of $(\eta_1, \eta_2) \in V_o$, and compute $dJ((x, y); (\eta_1, \eta_2))$.
- 4. Let V and V_o be as in Problem 1 and $J: V \to \mathbb{R}$ as in Problem 3. Define the set

$$\mathcal{A} = \{ (x, y) \in V \mid x(a) = x_o, \ x(b) = x_1, y(a) = y_o, \ \text{and} \ y(b) = y_1 \},\$$

where x_o, x_1, y_o and y_1 are given real numbers.

Assume that $(x, y) \in \mathcal{A}$ is an optimizer of J over the class \mathcal{A} .

(a) Show that

$$dJ((x,y);(\eta_1,\eta_2)) = 0,$$
 for all $(\eta_1,\eta_2) \in V_o.$

(b) Show that (x, y) must be solution of the system of equations

$$\begin{cases} \frac{d}{dt}[F_p(t,x,y,\dot{x},\dot{y})] &= F_x(t,x,y,\dot{x},\dot{y}); \\\\ \frac{d}{dt}[F_q(t,x,y,\dot{x},\dot{y})] &= F_y(t,x,y,\dot{x},\dot{y}). \end{cases}$$

5. Let $V = C^1([0,1], \mathbb{R}^2), V_o = C_o^1([0,1], \mathbb{R}^2)$ and

$$\mathcal{A} = \{ (x, y) \in V \mid x(0) = x_o, \ x(1) = x_1, y(0) = y_o, \ \text{and} \ y(1) = y_1 \},\$$

where x_o, x_1, y_o and y_1 are given real numbers.

Define the functional $J \colon V \to \mathbb{R}$ by

$$J((x,y)) = \int_0^1 \sqrt{(\dot{x}(t))^2 + (\dot{y}(t))^2} \, dt, \quad \text{for all } (x,y) \in V.$$

Consider the optimization problem: Find $(x, y) \in \mathcal{A}$ such that

$$J((x,y)) \leq J(u,v), \quad \text{for all } (u,v) \in \mathcal{A}$$

- (a) Give necessary conditions for $(x, y) \in \mathcal{A}$ to be a solution of the optimization problem.
- (b) Give a candidate $(x, y) \in \mathcal{A}$ for a solution of the optimization problem. Give a geometric interpretation of your result.