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Assignment #8

Due on Friday, November 17, 2017

Read Section 1.6.1 on Divergence Theorem, pp. 46–57, in Introduction to Partial Differ-
ential Equations and Hilbert Space Methods by Karl E. Gustafson.

Background and Definitions

Divergence. Let U be an open subset of R2 and
−→
F ∈ C1(U,R2) be a vector field given by

−→
F (x, y) = (P (x, y), Q(x, y)), for (x, y) ∈ U,

where P ∈ C1(U,R) and Q ∈ C1(U R) are C1, real–valued functions defined on U . The

divergence of
−→
F , denoted div

−→
F , is the scalar field, div

−→
F : U → R defined by

div
−→
F (x, y) =

∂P

∂x
(x, y) +

∂Q

∂y
(x, y)), for (x, y) ∈ U.

Gradient. Let U be an open subset of R2 and u ∈ C1(U,R) be a scalar field. The gradient
of u, denoted ∇u, is the vector field, ∇u : U → R2 defined by

∇u(x, y) =

(
∂u

∂x
(x, y),

∂u

∂y
(x, y)

)
, for (x, y) ∈ U.

Laplacian. Let U be an open subset of R2 and u ∈ C2(U,R) be a scalar field. The
divergence of the gradient of u, div∇u, is called the Laplacian of u, denoted by ∆u. Thus,

∆u = div∇u =
∂2u

∂x2
+
∂2u

∂y2
.

The Divergence Theorem in R2. Let U be an open subset of R2 and Ω an open subset
of U such that Ω ⊂ U . Suppose that Ω is bounded with boundary ∂Ω. Assume that ∂Ω is

a piece–wise C1, simple, closed curve. Let
−→
F ∈ C1(U,R2). Then,∫∫

Ω
div
−→
F dxdy =

∮
∂Ω

−→
F · n̂ ds, (1)

where n̂ is the outward, unit, normal vector to ∂Ω that exists everywhere on ∂Ω, except
possibly at finitely many points.

Do the following problems

1. Let U be an open subset of R2,
−→
F ∈ C1(U,R2) be a vector field and u ∈ C1(U,R) be

a scalar field. Show that

div(u
−→
F ) = ∇u ·

−→
F + u div

−→
F ,

where ∇u ·
−→
F denotes the dot–product of ∇u and

−→
F .
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2. Let U be an open subset of R2, u ∈ C2(U,R) and v ∈ C1(U,R). Show that

div(v∇u) = ∇v · ∇u+ v ∆u,

where ∇v · ∇u denotes the dot–product of ∇v and ∇u, and ∆u is the Laplacian of u.

3. Let U be an open subset of R2 and Ω be an open subset of R2 such that Ω ⊂ U . Assume
that the boundary, ∂Ω, of Ω is a simple closed curve parametrized by σ ∈ C1([0, 1],R2).
Let u ∈ C2(U,R) and v ∈ C1(U,R). Apply the Divergence Theorem (1) to the vector

field
−→
F = v∇u to obtain∫∫

Ω
∇u · ∇v dxdy +

∫∫
Ω
v∆u dxdy =

∮
∂Ω
v
∂u

∂n
ds, (2)

where ∆u is the Laplacian of u and
∂u

∂n
is the directional derivative of u in the

direction of a unit vector perpendicular to ∂Ω which points away from Ω. This is
usually referred to as Green’s identity I (see p. 47 in Gustafson’s book).

4. Let U be an open subset of R2 and Ω be an open subset of R2 such that Ω ⊂ U . Assume
that the boundary, ∂Ω, of Ω is a simple closed curve parametrized by σ ∈ C1([0, 1],R2).
Put

C1
o (Ω,R) = {v ∈ C1(U,R) | v = 0 on ∂Ω};

that is, C1
o (Ω,R) is the space of C1 functions in Ω that vanish on the boundary of Ω.

Let u ∈ C2(U,R). Use Green’s identity I in (2) to show that∫∫
Ω
∇v · ∇u dxdy = −

∫∫
Ω
v∆u dxdy, for all v ∈ C1

o (Ω,R).

5. Let U and Ω be as in Problem 4. A function u ∈ C2(U,R) is said to satisfy Laplace’s
equation in Ω if

∆u(x, y) = 0, for all (x, y) ∈ Ω. (3)

A function u ∈ C2(U,R) satisfying (3) is also said to be harmonic in Ω.

(a) Use the result from Problem 4 to show that, for any u ∈ C2(U,R) that is harmonic
in Ω, ∫∫

Ω
∇u · ∇v dxdy = 0, for all v ∈ C1

o (Ω,R).

(b) Assume that u ∈ C2(U,R) is harmonic in Ω. Show that, if u = 0 on ∂Ω, then
u(x, y) = 0 for all (x, y) ∈ Ω.


