Assignment #8

Due on Friday, November 17, 2017

Read Section 1.6.1 on *Divergence Theorem*, pp. 46–57, in *Introduction to Partial Differential Equations and Hilbert Space Methods* by Karl E. Gustafson.

Background and Definitions

Divergence. Let U be an open subset of \mathbb{R}^2 and $\overrightarrow{F} \in C^1(U, \mathbb{R}^2)$ be a vector field given by

$$\overrightarrow{F}(x,y) = (P(x,y), Q(x,y)), \text{ for } (x,y) \in U,$$

where $P \in C^1(U, \mathbb{R})$ and $Q \in C^1(U\mathbb{R})$ are C^1 , real-valued functions defined on U. The divergence of \overrightarrow{F} , denoted div \overrightarrow{F} , is the scalar field, div $\overrightarrow{F}: U \to \mathbb{R}$ defined by

$$\operatorname{div} \overrightarrow{F}(x,y) = \frac{\partial P}{\partial x}(x,y) + \frac{\partial Q}{\partial y}(x,y), \quad \text{ for } (x,y) \in U.$$

Gradient. Let U be an open subset of \mathbb{R}^2 and $u \in C^1(U, \mathbb{R})$ be a scalar field. The gradient of u, denoted ∇u , is the vector field, $\nabla u \colon U \to \mathbb{R}^2$ defined by

$$abla u(x,y) = \left(\frac{\partial u}{\partial x}(x,y), \frac{\partial u}{\partial y}(x,y)\right), \quad \text{for } (x,y) \in U.$$

Laplacian. Let U be an open subset of \mathbb{R}^2 and $u \in C^2(U, \mathbb{R})$ be a scalar field. The divergence of the gradient of u, div ∇u , is called the Laplacian of u, denoted by Δu . Thus,

$$\Delta u = \operatorname{div} \nabla u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}.$$

The Divergence Theorem in \mathbb{R}^2 . Let U be an open subset of \mathbb{R}^2 and Ω an open subset of U such that $\overline{\Omega} \subset U$. Suppose that Ω is bounded with boundary $\partial\Omega$. Assume that $\partial\Omega$ is a piece–wise C^1 , simple, closed curve. Let $\overrightarrow{F} \in C^1(U, \mathbb{R}^2)$. Then,

$$\iint_{\Omega} \operatorname{div} \overrightarrow{F} \, dx dy = \oint_{\partial \Omega} \overrightarrow{F} \cdot \widehat{n} \, ds, \tag{1}$$

where \hat{n} is the outward, unit, normal vector to $\partial \Omega$ that exists everywhere on $\partial \Omega$, except possibly at finitely many points.

Do the following problems

1. Let U be an open subset of \mathbb{R}^2 , $\overrightarrow{F} \in C^1(U, \mathbb{R}^2)$ be a vector field and $u \in C^1(U, \mathbb{R})$ be a scalar field. Show that

$$\operatorname{div}(u\overrightarrow{F}) = \nabla u \cdot \overrightarrow{F} + u \operatorname{div} \overrightarrow{F},$$

where $\nabla u \cdot \vec{F}$ denotes the dot-product of ∇u and \vec{F} .

2. Let U be an open subset of \mathbb{R}^2 , $u \in C^2(U, \mathbb{R})$ and $v \in C^1(U, \mathbb{R})$. Show that

$$\operatorname{div}(v\nabla u) = \nabla v \cdot \nabla u + v \ \Delta u,$$

where $\nabla v \cdot \nabla u$ denotes the dot-product of ∇v and ∇u , and Δu is the Laplacian of u.

3. Let U be an open subset of \mathbb{R}^2 and Ω be an open subset of \mathbb{R}^2 such that $\overline{\Omega} \subset U$. Assume that the boundary, $\partial\Omega$, of Ω is a simple closed curve parametrized by $\sigma \in C^1([0,1],\mathbb{R}^2)$. Let $u \in C^2(U,\mathbb{R})$ and $v \in C^1(U,\mathbb{R})$. Apply the Divergence Theorem (1) to the vector field $\overrightarrow{F} = v\nabla u$ to obtain

$$\iint_{\Omega} \nabla u \cdot \nabla v \, dx dy + \iint_{\Omega} v \Delta u \, dx dy = \oint_{\partial \Omega} v \frac{\partial u}{\partial n} \, ds, \tag{2}$$

where Δu is the Laplacian of u and $\frac{\partial u}{\partial n}$ is the directional derivative of u in the direction of a unit vector perpendicular to $\partial \Omega$ which points away from Ω . This is usually referred to as **Green's identity I** (see p. 47 in Gustafson's book).

4. Let U be an open subset of \mathbb{R}^2 and Ω be an open subset of \mathbb{R}^2 such that $\overline{\Omega} \subset U$. Assume that the boundary, $\partial\Omega$, of Ω is a simple closed curve parametrized by $\sigma \in C^1([0,1], \mathbb{R}^2)$. Put

$$C_o^1(\Omega, \mathbb{R}) = \{ v \in C^1(U, \mathbb{R}) \mid v = 0 \text{ on } \partial\Omega \};$$

that is, $C_o^1(\Omega, \mathbb{R})$ is the space of C^1 functions in Ω that vanish on the boundary of Ω . Let $u \in C^2(U, \mathbb{R})$. Use Green's identity I in (2) to show that

$$\iint_{\Omega} \nabla v \cdot \nabla u \, dx dy = -\iint_{\Omega} v \Delta u \, dx dy, \quad \text{ for all } v \in C_o^1(\Omega, \mathbb{R}).$$

5. Let U and Ω be as in Problem 4. A function $u \in C^2(U, \mathbb{R})$ is said to satisfy Laplace's equation in Ω if

$$\Delta u(x, y) = 0, \quad \text{for all } (x, y) \in \Omega.$$
(3)

A function $u \in C^2(U, \mathbb{R})$ satisfying (3) is also said to be *harmonic* in Ω .

(a) Use the result from Problem 4 to show that, for any $u \in C^2(U, \mathbb{R})$ that is harmonic in Ω ,

$$\iint_{\Omega} \nabla u \cdot \nabla v \, dx dy = 0, \quad \text{ for all } v \in C_o^1(\Omega, \mathbb{R}).$$

(b) Assume that $u \in C^2(U, \mathbb{R})$ is harmonic in Ω . Show that, if u = 0 on $\partial\Omega$, then u(x, y) = 0 for all $(x, y) \in \Omega$.