Review Problems for Exam 1

1. Let Ω be a bounded region in the $x y$-plane, and let $G=G(x, y)$ be continuous function defined in Ω. Suppose that

$$
\iint_{\Omega} G(x, y) v(x, y) \mathrm{d} x \mathrm{~d} y=0
$$

for every continuously differentiable function v defined in Ω and vanishing on the boundary of Ω. Show that $G(x, y)=0$ for every $(x, y) \in \Omega$.
2. Let $f \in C([a, b], \mathbb{R})$ and $g \in C([a, b], \mathbb{R})$ be given. Define $h: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
h(t)=\int_{a}^{b}[f(x)-\operatorname{tg}(x)]^{2} d x, \quad \text { for all } t \in \mathbb{R} \tag{1}
\end{equation*}
$$

Observe that $h(t) \geqslant 0$ for all $t \in \mathbb{R}$. Observe also that h is a differentiable function of t.
(a) Assume that $\int_{a}^{b}(g(x))^{2} d x \neq 0$. Find the value $t_{o} \in \mathbb{R}$ such that

$$
h\left(t_{o}\right) \leqslant h(t), \quad \text { for all } t \in \mathbb{R} .
$$

(b) Assume that $\int_{a}^{b}(g(x))^{2} d x \neq 0$, and let t_{o} be as in the previous part. Use the observation $h\left(t_{o}\right) \geqslant 0$ to the deduce the inequality

$$
\left(\int_{a}^{b} f(x) g(x) d x\right)^{2} \leqslant \int_{a}^{b}(f(x))^{2} d x \cdot \int_{a}^{b}(g(x))^{2} d x
$$

This leads to the Cauchy-Schwarz inequality

$$
\left|\int_{a}^{b} f(x) g(x) d x\right| \leqslant \sqrt{\int_{a}^{b}(f(x))^{2} d x} \cdot \sqrt{\int_{a}^{b}(g(x))^{2} d x} .
$$

(c) When does the inequality in part (b) yields equality?
3. Let $V=\left\{y \in C^{1}([0,1], \mathbb{R}) \mid \int_{0}^{1}\left(y^{\prime}(x)\right)^{2} \mathrm{~d} x<\infty\right\}$, and define $J: V \rightarrow \mathbb{R}$ by $J(y)=\frac{1}{2} \int_{0}^{1}\left(y^{\prime}(x)\right)^{2} \mathrm{~d} x \quad$ for all $y \in V$.
(a) Prove that J is Gâteaux differentiable and compute $d J(y ; v)$ for $y, v \in V$.
(b) Prove that J is convex but not strictly convex.
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a real valued function of a single variable, and assume that f is twice differentiable with continuous second derivative $f^{\prime \prime}: \mathbb{R} \rightarrow \mathbb{R}$. Let $V=C^{1}([a, b], \mathbb{R})$ and define $J: V \rightarrow \mathbb{R}$ by

$$
J(y)=\int_{a}^{b} f\left(y^{\prime}(x)\right) d x, \quad \text { for all } y \in V
$$

Put $V_{o}=C_{o}^{1}([a, b], \mathbb{R})$ and define

$$
\mathcal{A}=\left\{y \in C^{1}[a, b] \mid y(a)=y_{o} \text { and } y(b)=y_{1}\right\}
$$

for given real numbers y_{o} and y_{1}.
(a) Show that if $f^{\prime \prime}(z)>0$ for all $z \in \mathbb{R}$, then J is strictly convex in \mathcal{A}.
(b) Give the Euler-Lagrange equation associated with J and, if possible, solve it subject to the boundary conditions in \mathcal{A}.
(c) Find the unique minimizer of J in \mathcal{A}.
5. Let $F: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ denote a continuous function of two variables y and z. Let $V=C^{1}([a, b], \mathbb{R})$ and define the functional

$$
\begin{equation*}
J(y)=\int_{a}^{b} F\left(y(x), y^{\prime}(x)\right) \mathrm{d} x, \quad \text { for } y \in V \tag{2}
\end{equation*}
$$

(a) Assume that $y(a)=y_{o}$ and $y(b)=y_{1}$ and assume that $y_{o}<y_{1}$. Make a change of variables to express the functional in (2) in terms of an integral with respect to y of the form

$$
\begin{equation*}
J(x)=\int_{y_{o}}^{y_{1}} G\left(y, x^{\prime}(y)\right) \mathrm{d} y, \quad \text { for } x \in C^{1}\left(\left[y_{o}, y_{1}\right], \mathbb{R}\right) \tag{3}
\end{equation*}
$$

Express the function G in terms of F.
(b) Derive the Euler-Lagrange equation associated with the functional J given in (3).
(c) Solve the differential equation derived in the previous part and deduce that, if y is a solution of the Euler-Lagrange equation associated with the functional J given in (2), then

$$
y^{\prime} F_{z}\left(y, y^{\prime}\right)-F\left(y, y^{\prime}\right)=C
$$

for some constant C.
6. Let V denote a normed, linear space, and V_{o} a nontrivial subspace of V, and Assume that $J: V \rightarrow \mathbb{R}$ and $J_{1}: V \rightarrow \mathbb{R}$ are Gâteaux differentiable in V along any direction $v \in V_{o}$.
(a) Show that $d J(u ; c v)=c d J(u ; v)$ for any $c \in \mathbb{R}$.
(b) Show that $J+J_{1}$ is Gâteaux differentiable at any $u \in V$ in the direction of $v \in V_{o}$, and

$$
d\left(J+J_{1}\right)(u ; v)=d J(u ; v)+d J_{1}(u ; v)
$$

7. Let V denote a normed, linear space, and V_{o} a nontrivial subspace of V, and \mathcal{A} a nonempty subset of V. Assume that $J_{1}: V \rightarrow \mathbb{R}$ and $J_{2}: V \rightarrow \mathbb{R}$ are Gâteaux differentiable in V along any direction $v \in V_{o}$.
(a) Show that if J_{1} and J_{2} are convex in \mathcal{A}, then so are $c^{2} J_{1}$ and $J_{1}+J_{2}$, for any $c \in \mathbb{R}$.
(b) Show that if J_{1} is convex in \mathcal{A} and J_{2} is strictly convex in \mathcal{A}, then $J_{1}+J_{2}$ is strictly convex in \mathcal{A}.
8. Let $J: \mathcal{A} \rightarrow \mathbb{R}$ be defined by $J(y)=\int_{0}^{1 / 2}\left[y(x)+\sqrt{1+\left(y^{\prime}(x)\right)^{2}}\right] \mathrm{d} x$ for all $y \in \mathcal{A}$, where $\mathcal{A}=\left\{y \in C^{1}[0,1 / 2] \mid y(0)=-1\right.$ and $\left.y(1 / 2)=-\sqrt{3} / 2\right\}$. Verify that J is strictly convex and find, if possible, the unique minimizing function for J in \mathcal{A}.
9. Let $J: \mathcal{A} \rightarrow \mathbb{R}$ be defined by $J(y)=\int_{1}^{2}\left[y(x)+x y^{\prime}(x)\right] \mathrm{d} x$ for all $y \in \mathcal{A}$, where $\mathcal{A}=\left\{y \in C^{1}[1,2] \mid y(1)=1\right.$ and $\left.y(2)=2\right\}$. Verify that J is convex, but not strictly convex in \mathcal{A}. Can you find more than one function which minimizes J in \mathcal{A} ?
