Assignment #15

Due on Wednesday, November 14, 2018

Read Section 5.3 on *Integral of a Vector Field Along a Path*, pp. 281–290, in Baxandall and Liebek's text.

Read Section 5.2 on *Line Integrals* in the class Lecture Notes at http://pages.pomona.edu/~ajr04747/.

Background and Definitions

• (Line Integrals) Let U be an open subset of \mathbb{R}^n and $F: U \to \mathbb{R}^n$ be a continuous vector field. Let $C \subset U$ be a C^1 simple curve parmetrized by a C^1 path $\sigma: [a, b] \to \mathbb{R}^n$. We define the line integral of F over C, oriented according to the parametrization, σ , denoted $\int_C F \cdot d\overrightarrow{r}$, to be

$$\int_C F \cdot d\overrightarrow{r} = \int_a^b F(\sigma(t)) \cdot \sigma'(t) \ dt.$$

If $U \subseteq \mathbb{R}^3$ and $F = f_1\hat{i} + f_2\hat{j} + f_3\hat{k}$, where $f_j \colon U \to \mathbb{R}$ are continuous scalar fields, we denote $\int_C F \cdot d\overrightarrow{r}$ by $\int_C f_1 dx + f_2 dy + f_3 dz$. The expression $f_1 dx + f_2 dy + f_3 dz$ is called a differential 1-form in \mathbb{R}^3 .

• If the curve C is not C^1 , but is piece–wise C^1 , then the line integral of F over C is given by:

$$\int_C F \cdot d\overrightarrow{r} = \sum_{i=i}^k \int_{C_i} F \cdot d\overrightarrow{r},$$

where $C = \bigcup_{i=1}^{\kappa} C_i$, and the orientation of each C_i is consistent with that of C.

Do the following problems

1. Consider a portion of a helix, C, parametrized by the path

 $\sigma(t) = (\cos t, t, \sin t) \quad \text{for} \ \ 0 \leqslant t \leqslant \pi.$

Let $F(x, y, z) = x \ \hat{i} + y \ \hat{j} + z \ \hat{k}$, for all $(x, y, z) \in \mathbb{R}^3$, be a vector field in \mathbb{R}^3 . Evaluate the line integral $\int_C F \cdot d\overrightarrow{r}$; that is, the integral of the tangential component of the field F along the curve C.

- 2. Evaluate $\int_C yz \, dx + xz \, dy + xy \, dz$, where C is the directed line segment from the point (1, 1, 0) to the point (3, 2, 1) in \mathbb{R}^3 .
- 3. Integrate the 1–form $xy^2 dx + y dy$ along each of the following paths from (0,0) to (1,1):
 - (a) the straight line form (0,0) to (1,1),
 - (b) the line from (0,0) to (1,0) followed by the line from (1,0) to (1,1),
 - (c) the lines from (0,0) to (0,1) to (1,1).
- 4. Integrate the 1–form $xy^2 dx + y dy$ along each of the following paths from (0,0) to (1,1):
 - (a) the curve $y = x^2$;
 - (b) the curve $x = y^2$;
 - (c) the lines from (0,0) to (2,0) to (2,1) to (1,1).
- 5. Let $f: U \to \mathbb{R}$ be a C^1 scalar field defined on an open subset U of \mathbb{R}^n . Define the vector field $F: U \to \mathbb{R}^n$ by $F(u) = \nabla f(u)$ for all $u \in U$. Suppose that C is a C^1 simple curve in U connecting the point u to the point v in U. Show that

$$\int_C F \cdot d\overrightarrow{r} = f(v) - f(u).$$

Conclude therefore that the line integral of F along a path from u to v in U is independent of the path connecting u to v. The field F is called a *gradient field*.