Assignment \#16

Due on Monday, November 19, 2018
Read Section 5.4 on The Fundamental Theorem of Calculus, pp. 292-295, in Baxandall and Liebek's text.

Read Section 5.5 on Potential Functions and Conservative Fields, pp. 296-308, in Baxandall and Liebek's text.
Read Section 5.2 on Line Integrals in the class Lecture Notes at http://pages.pomona.edu/~ajr04747/.
Read Section 5.3 on Gradient Fields in the class Lecture Notes at http://pages.pomona.edu/~ajr04747/.
Read Section 5.4 on Flux Across Plane Curves in the class Lecture Notes at http://pages.pomona.edu/~ajr04747/.

Background and Definitions

- (Path Connected Sets) A set $U \subseteq \mathbb{R}^{n}$ is said to be path connected if and only if for any vectors p and q in U, there exists a C^{1} path $\sigma:[0,1] \rightarrow \mathbb{R}^{n}$ such that $\sigma(0)=p, \sigma(1)=q$ and $\sigma(t) \in U$ for all $t \in[0,1]$; i.e., any two elements in U can be connected by a C^{1} path whose image is entirely contained in U.
- (Flux Across a Simple, Closed Curve in $\left.\mathbb{R}^{2}\right)$ Let U denote an open subset of \mathbb{R}^{2} and $F: U \rightarrow \mathbb{R}^{2}$ be a two-dimensional vector field given by

$$
F(x, y)=P(x, y) \widehat{i}+Q(x, y) \widehat{j}, \quad \text { for all }(x, y) \in U
$$

where P and Q are scalar fields defined in U. Let C denote a simple, piece-wise C^{1}, closed curve contained in U, which is oriented in the counterclockwise sense.
The flux of F across C, denoted by $\oint_{C} F \cdot \widehat{n} d s$, is defined by

$$
\oint_{C} F \cdot \widehat{n} d s=\int_{C} P(x, y) d y-Q(x, y) d x
$$

where \widehat{n} denotes the outward unit normal to the curve C, wherever it is defined.

Do the following problems

1. Integrate the 1 -form $y z d x+x z d y+x y d z$ over each of the following curves in \mathbb{R}^{3} that connect $(0,1,0)$ to $(2,1,1)$:
(a) the straight line from $(0,1,0)$ to $(2,1,1)$,
(b) the lines from $(0,1,0)$ to $(0,1,1)$ to $(2,1,1)$,
(c) the lines from $(0,1,0)$ to $(2,1,0)$ to $(2,1,1)$,
(d) the $\operatorname{arc}\left(2 t,(2 t-1)^{2}, t\right)$, for $0 \leqslant t \leqslant 1$.
2. Let U denote an open subset of \mathbb{R}^{n} that is path connected, and let $F: U \rightarrow \mathbb{R}^{n}$ be a vector field with the property that

$$
\int_{C} F \cdot d \vec{r}=0
$$

for any simple, piece-wise C^{1}, closed curve, C, contained in U.
Let p and q be points in U. Since U is path connected, there exists a C^{1} path, $\sigma:[0,1] \rightarrow U$, connecting p to q. Assume that σ parametrizes a curve C_{1} in U. Prove that if $\gamma:[0,1] \rightarrow U$ is another C^{1} path that connects p to q, and $C_{2}=\gamma([0,1])$ is paramatrized by γ, then

$$
\int_{C_{1}} F \cdot d \vec{r}=\int_{C_{2}} F \cdot d \vec{r}
$$

3. Let U denote an open subset of \mathbb{R}^{n} and let $F: U \rightarrow \mathbb{R}^{n}$ be a vector field with the property that $F(v)=\nabla f(v)$ for all $v \in U$, where $f: U \rightarrow \mathbb{R}$ is a C^{1} scalar field.
Prove that if C is any C^{1}, simple, closed curve in U, then

$$
\int_{C} F \cdot d \vec{r}=0
$$

4. Let $F(x, y)=x^{2} \widehat{i}+y^{2} \widehat{j}$ and C be the boundary of the square with vertices $(0,0),(1,0),(1,1)$ and $(0,1)$, oriented in the counterclockwise sense. Compute the flux of F across C.
5. Compute the flux, $\oint_{C} F \cdot \widehat{n} d s$, where $F(x, y)=x \widehat{i}+y \widehat{j}$, for all $(x, y) \in \mathbb{R}^{2}$ and C is the unit circle oriented in the counterclockwise sense.
