Assignment \#18

Due on Monday, December 3, 2018

Read Section 11.3 on Differential 2-Forms, pp. 527-534, in Baxandall and Liebek's text.

Read Section 5.5 on Differential Forms in the class Lecture Notes at http://pages.pomona.edu/~ajr04747/.

Background and Definitions

- (Skew-Symmetric, Bilinear Forms in \mathbb{R}^{n}) A skew-symmetric bilinear form in \mathbb{R}^{n} is a map, $B: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$, which assigns to each pair of vectors, v and w, in \mathbb{R}^{n}, a real value, $B(v, w)$; the form $B(v, w)$ is linear in both v and w; and

$$
B(w, v)=-B(v, w), \quad \text { for all } v, w \in \mathbb{R}^{n}
$$

Denote by $\mathcal{A}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}, \mathbb{R}\right)$ the space of skew-symmetric, bilinear forms.

- (Differential 2-Forms in \mathbb{R}^{n}) A differential 2-form in an open set $U \subseteq \mathbb{R}^{n}$ is a smooth function, $\omega: U \rightarrow \mathcal{A}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}, \mathbb{R}\right)$, which assigns to each $p \in U$ a skew-symmetric, bilinear form $\omega_{p}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- (Wedge Product of Differential 1-Forms) Given two differential 1-forms, ω and η, in some open subset, U, of \mathbb{R}^{n}, the wedge product of ω and η is the differential 2-form in U, denoted by $\omega \wedge \eta$ and defined by

$$
(\omega \wedge \eta)_{p}(v, w)=\omega_{p}(v) \eta_{p}(w)-\omega_{p}(w) \eta_{p}(v), \quad \text { for } p \in U, \text { and } v, w \in \mathbb{R}^{n}
$$

Do the following problems

1. Given $v=a_{1} \widehat{i}+a_{2} \widehat{j}$ and $w=b_{1} \widehat{i}+b_{2} \widehat{j}$ in \mathbb{R}^{2}, compute the wedge product of $d x$ and $d y$ at (v, w); that is, evaluate $d x \wedge d y(v, w)$. What do you conclude?
2. Let U denote an open subset of \mathbb{R}^{2}. Prove that any differential 2-form, ω, in U must be of the form

$$
\begin{equation*}
\omega=f(x, y) d x \wedge d y, \quad \text { for all }(x, y) \in U \tag{1}
\end{equation*}
$$

where $f: U \rightarrow \mathbb{R}$ is a smooth scalar field on U.
Suggestion: Begin with an arbitrary differential 2 -form, ω, in U, and evaluate $\omega_{p}(v, w)$ for arbitrary points $p \in U$ and arbitrary pairs of vectors $v=a_{1} \widehat{i}+a_{2} \widehat{j}$ and $w=b_{1} \widehat{i}+b_{2} \widehat{j}$ in \mathbb{R}^{2}.
3. Express the following wedge products of differential 1-forms in \mathbb{R}^{2} in the standard form given in (1). In each case, identify the function f in (1).
(a) $(d x+d y) \wedge(d x-d y)$;
(b) $(x d x+y d y) \wedge(y d x+x d y)$;
4. Let $A=\left[a_{i j}\right]$ denote a 2×2 matrix, and define the differential 1 -forms in \mathbb{R}^{2} :

$$
\omega_{1}=a_{11} d x+a_{21} d y
$$

and

$$
\omega_{2}=a_{12} d x+a_{22} d y
$$

Compute $\omega_{1} \wedge \omega_{2}$. What do you conclude?
5. Express the differential 2-form in \mathbb{R}^{3}

$$
x d y \wedge d z+y d z \wedge d x+z d x \wedge d y
$$

as a wedge product of differential 1-forms in \mathbb{R}^{3}.

