Assignment #18

Due on Monday, December 3, 2018

Read Section 11.3 on *Differential 2–Forms*, pp. 527–534, in Baxandall and Liebek's text.

Read Section 5.5 on *Differential Forms* in the class Lecture Notes at http://pages.pomona.edu/~ajr04747/.

Background and Definitions

• (Skew-Symmetric, Bilinear Forms in \mathbb{R}^n) A skew-symmetric bilinear form in \mathbb{R}^n is a map, $B: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, which assigns to each pair of vectors, v and w, in \mathbb{R}^n , a real value, B(v, w); the form B(v, w) is linear in both v and w; and

B(w, v) = -B(v, w), for all $v, w \in \mathbb{R}^n$.

Denote by $\mathcal{A}(\mathbb{R}^n \times \mathbb{R}^n, \mathbb{R})$ the space of skew-symmetric, bilinear forms.

- (Differential 2-Forms in \mathbb{R}^n) A differential 2-form in an open set $U \subseteq \mathbb{R}^n$ is a smooth function, $\omega: U \to \mathcal{A}(\mathbb{R}^n \times \mathbb{R}^n, \mathbb{R})$, which assigns to each $p \in U$ a skew-symmetric, bilinear form $\omega_p: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$.
- (Wedge Product of Differential 1–Forms) Given two differential 1–forms, ω and η , in some open subset, U, of \mathbb{R}^n , the wedge product of ω and η is the differential 2–form in U, denoted by $\omega \wedge \eta$ and defined by

$$(\omega \wedge \eta)_p(v, w) = \omega_p(v)\eta_p(w) - \omega_p(w)\eta_p(v), \text{ for } p \in U, \text{ and } v, w \in \mathbb{R}^n.$$

Do the following problems

- 1. Given $v = a_1 \hat{i} + a_2 \hat{j}$ and $w = b_1 \hat{i} + b_2 \hat{j}$ in \mathbb{R}^2 , compute the wedge product of dx and dy at (v, w); that is, evaluate $dx \wedge dy(v, w)$. What do you conclude?
- 2. Let U denote an open subset of \mathbb{R}^2 . Prove that any differential 2-form, ω , in U must be of the form

$$\omega = f(x, y) \, dx \wedge dy, \quad \text{for all } (x, y) \in U, \tag{1}$$

where $f: U \to \mathbb{R}$ is a smooth scalar field on U.

Suggestion: Begin with an arbitrary differential 2-form, ω , in U, and evaluate $\omega_p(v, w)$ for arbitrary points $p \in U$ and arbitrary pairs of vectors $v = a_1 \hat{i} + a_2 \hat{j}$ and $w = b_1 \hat{i} + b_2 \hat{j}$ in \mathbb{R}^2 .

Math 67. Rumbos

- 3. Express the following wedge products of differential 1-forms in \mathbb{R}^2 in the standard form given in (1). In each case, identify the function f in (1).
 - (a) $(dx + dy) \wedge (dx dy);$
 - (b) $(x dx + y dy) \land (y dx + x dy);$
- 4. Let $A = [a_{ij}]$ denote a 2 × 2 matrix, and define the differential 1-forms in \mathbb{R}^2 :

$$\omega_1 = a_{11} \ dx + a_{21} \ dy$$

and

$$\omega_2 = a_{12} \, dx + a_{22} \, dy.$$

Compute $\omega_1 \wedge \omega_2$. What do you conclude?

5. Express the differential 2–form in \mathbb{R}^3

$$x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy$$

as a wedge product of differential 1-forms in \mathbb{R}^3 .