Assignment #19

Due on Wednesday, December 5, 2018

Read Section 11.3 on *Differential 2–Forms*, pp. 527–534, in Baxandall and Liebek's text.

Read Section 5.6 on *Calculus of Differential Forms* in the class Lecture Notes at http://pages.pomona.edu/~ajr04747/.

Read Section 5.7 on *Evaluating Differential 2-Forms: Double Integrals* in the class Lecture Notes at http://pages.pomona.edu/~ajr04747/.

Background and Definitions

• (The Fundamental Theorem of Calculus in \mathbb{R}^2 or \mathbb{R}^3 for Oriented Triangles) Let U denote an open region in \mathbb{R}^2 or \mathbb{R}^3 and T an oriented triangle contained in U. Denote the boundary of T by ∂T . If ω is any differential 1-form defined in U, the

$$\int_{T} d\omega = \oint_{\partial T} \omega. \tag{1}$$

• (Green's Theorem for Oriented Triangles) Let U denote an open region in \mathbb{R}^2 and T an oriented triangle contained in U. Denote the boundary of T by ∂T , and assume that it is oriented in the counterclockwise sense. For any C^1 functions, $P: U \to \mathbb{R}$ and $Q: U \to \mathbb{R}$, defined in U,

$$\iint_{T} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \oint_{\partial T} P dx + Q dy$$
 (2)

• (Divergence of a Vector Field in \mathbb{R}^2) Given a C^1 vector field, $F(x,y) = P(x,y) \hat{i} + Q(x,y) \hat{j}$, defined on some open subset U of \mathbb{R}^2 , the divergence of F is the scalar field on U given by

$$\operatorname{div} F(x,y) = \frac{\partial P}{\partial x}(x,y) + \frac{\partial Q}{\partial y}(x,y) \quad \text{for all } (x,y) \in U.$$
 (3)

Do the following problems

1. Evaluate the differential form $3 dx \wedge dy$ on each of the following oriented triangles:

(a)
$$[(5,2),(1,3),(3,4)]$$
 (b) $[(1,0,-2),(3,1,5),(-2,1,0)]$

2. Let P and Q denote smooth scalar fields defined in some open region, U, or \mathbb{R}^2 , and define the 1-form $\omega = P \, dy - Q \, dx$.

- (a) Compute the differential, $d\omega$, of ω .
- (b) Recall that the integral $\int_C \omega$, where C is a simple closed curve in U, gives the flux of the field. $F = P \hat{i} + Q \hat{j}$, across the curve C. What does the Fundamental Theorem of Calculus in (1), where T is a positively oriented triangle in U, say about the flux of F across the boundary of T and the divergence of F as defined in (3)?
- 3. Verify the Fundamental Theorem of Calculus in (1) for the differential 1–form

$$\omega = yz \ dx + xz \ dy + xy \ dz,$$

and the oriented triangle $T=[P_oP_1P_2]$, where P_o , P_1 and P_2 are any three non–collinear points in \mathbb{R}^3 .

4. Let T denote the triangle with vertices $P_o(0,0)$, $P_1(2,0)$ and $P_2(1,1)$, where the boundary, ∂T , of T is oriented in the counterclockwise sense. Let $F: \mathbb{R}^2 \to \mathbb{R}^2$ be the vector field given by

$$F(x,y) = -\frac{y}{2}\,\widehat{i} + \frac{x}{2}\,\widehat{j}.$$

Evaluate the line integral $\oint_{\partial T} F \cdot d\mathbf{r}$ by applying Green's Theorem in (2).

5. Let T and F be as in Problem 4.

Evaluate the flux of F across ∂T , $\oint_{\partial T} F \cdot d\mathbf{n}$, by applying Green's Theorem in (2).