Assignment \#19

Due on Wednesday, December 5, 2018
Read Section 11.3 on Differential 2-Forms, pp. 527-534, in Baxandall and Liebek's text.

Read Section 5.6 on Calculus of Differential Forms in the class Lecture Notes at http://pages.pomona.edu/~ajr04747/.
Read Section 5.7 on Evaluating Differential 2-Forms: Double Integrals in the class Lecture Notes at http://pages. pomona.edu/~ajr04747/.

Background and Definitions

- (The Fundamental Theorem of Calculus in \mathbb{R}^{2} or \mathbb{R}^{3} for Oriented Triangles) Let U denote an open region in \mathbb{R}^{2} or \mathbb{R}^{3} and T an oriented triangle contained in U. Denote the boundary of T by ∂T. If ω is any differential 1 -form defined in U, the

$$
\begin{equation*}
\int_{T} d \omega=\oint_{\partial T} \omega \tag{1}
\end{equation*}
$$

- (Green's Theorem for Oriented Triangles) Let U denote an open region in \mathbb{R}^{2} and T an oriented triangle contained in U. Denote the boundary of T by ∂T, and assume that it is oriented in the counterclockwise sense. For any C^{1} functions, $P: U \rightarrow \mathbb{R}$ and $Q: U \rightarrow \mathbb{R}$, defined in U,

$$
\begin{equation*}
\iint_{T}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y=\oint_{\partial T} P d x+Q d y \tag{2}
\end{equation*}
$$

- (Divergence of a Vector Field in \mathbb{R}^{2}) Given a C^{1} vector field, $F(x, y)=P(x, y) \widehat{i}+$ $Q(x, y) \widehat{j}$, defined on some open subset U of \mathbb{R}^{2}, the divergence of F is the scalar field on U given by

$$
\begin{equation*}
\operatorname{div} F(x, y)=\frac{\partial P}{\partial x}(x, y)+\frac{\partial Q}{\partial y}(x, y) \quad \text { for all }(x, y) \in U \tag{3}
\end{equation*}
$$

Do the following problems

1. Evaluate the differential form $3 d x \wedge d y$ on each of the following oriented triangles:
(a) $[(5,2),(1,3),(3,4)]$
(b) $[(1,0,-2),(3,1,5),(-2,1,0)]$
2. Let P and Q denote smooth scalar fields defined in some open region, U, or \mathbb{R}^{2}, and define the 1-form $\omega=P d y-Q d x$.
(a) Compute the differential, $d \omega$, of ω.
(b) Recall that the integral $\int_{C} \omega$, where C is a simple closed curve in U, gives the flux of the field. $F=P \widehat{i}+Q \widehat{j}$, across the curve C.
What does the Fundamental Theorem of Calculus in (1), where T is a positively oriented triangle in U, say about the flux of F across the boundary of T and the divergence of F as defined in (3)?
3. Verify the Fundamental Theorem of Calculus in (1) for the differential 1-form

$$
\omega=y z d x+x z d y+x y d z
$$

and the oriented triangle $T=\left[P_{o} P_{1} P_{2}\right]$, where P_{o}, P_{1} and P_{2} are any three non-collinear points in \mathbb{R}^{3}.
4. Let T denote the triangle with vertices $P_{o}(0,0), P_{1}(2,0)$ and $P_{2}(1,1)$, where the boundary, ∂T, of T is oriented in the counterclockwise sense. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the vector field given by

$$
F(x, y)=-\frac{y}{2} \widehat{i}+\frac{x}{2} \widehat{j}
$$

Evaluate the line integral $\oint_{\partial T} F \cdot d \mathbf{r}$ by applying Green's Theorem in (2).
5. Let T and F be as in Problem 4.

Evaluate the flux of F across $\partial T, \oint_{\partial T} F \cdot d \mathbf{n}$, by applying Green's Theorem in (2).

