Assignment #4

Due on Monday, September 24, 2018

Read Section 1.2 on *The Vector Space* \mathbb{R}^n in Baxandall and Liebek's text (pp. 2–9). **Read**Section 2.5 on *The Cross Product* in the class Lecture Notes at http://pages.pomona.edu/~ajr04747/.

Do the following problems

- 1. Let u, v and w denote non-zero vectors in \mathbb{R}^3 . Given that $u \cdot w = 0, u \cdot v = c$, where c is a real constant, and $u \times v = w$, find the components of v in each of the three mutually orthogonal directions: u, w and $u \times w$.
- 2. Prove that the cross product is non-associative; that is, find three vectors u, v and w in \mathbb{R}^3 such that $(u \times v) \times w \neq u \times (v \times w)$.
- 3. Let v and w denote vectors in \mathbb{R}^3 , and **0** the zero-vector in \mathbb{R}^3 .
 - (a) Prove that if $v \times w = 0$ and $v \cdot w = 0$, then at least one of v or w must be the zero vector.
 - (b) Prove that $v \cdot (v \times w) = 0$.
- 4. In this problem and the next, we derive the vector identity

$$u \times (v \times w) = (u \cdot w)v - (u \cdot v)w$$

for any vectors u, v and w in \mathbb{R}^3 .

(a) Argue that $u \times (v \times w)$ lies in the span of v and w. Consequently, there exist scalars t and s such that

$$u \times (v \times w) = tv + sw$$

- (b) Show that $(u \cdot v)t + (u \cdot w)s = 0$.
- 5. Let u, v and w be as in the previous problem.
 - (a) Use the results of the previous problem to conclude that there exists a scalar r such that

$$u \times (v \times w) = r[(u \cdot w)v - (u \cdot v)w].$$

(b) By considering some simple examples, deduce that r = 1 in the previous identity