Assignment \#4

Due on Monday, September 24, 2018
Read Section 1.2 on The Vector Space \mathbb{R}^{n} in Baxandall and Liebek's text (pp. 2-9).
ReadSection 2.5 on The Cross Product in the class Lecture Notes at http://pages.pomona.edu/~ajr04747/.

Do the following problems

1. Let u, v and w denote non-zero vectors in \mathbb{R}^{3}. Given that $u \cdot w=0, u \cdot v=c$, where c is a real constant, and $u \times v=w$, find the components of v in each of the three mutually orthogonal directions: u, w and $u \times w$.
2. Prove that the cross product is non-associative; that is, find three vectors u, v and w in \mathbb{R}^{3} such that $(u \times v) \times w \neq u \times(v \times w)$.
3. Let v and w denote vectors in \mathbb{R}^{3}, and $\mathbf{0}$ the zero-vector in \mathbb{R}^{3}.
(a) Prove that if $v \times w=\mathbf{0}$ and $v \cdot w=0$, then at least one of v or w must be the zero vector.
(b) Prove that $v \cdot(v \times w)=0$.
4. In this problem and the next, we derive the vector identity

$$
u \times(v \times w)=(u \cdot w) v-(u \cdot v) w
$$

for any vectors u, v and w in \mathbb{R}^{3}.
(a) Argue that $u \times(v \times w)$ lies in the span of v and w. Consequently, there exist scalars t and s such that

$$
u \times(v \times w)=t v+s w
$$

(b) Show that $(u \cdot v) t+(u \cdot w) s=0$.
5. Let u, v and w be as in the previous problem.
(a) Use the results of the previous problem to conclude that there exists a scalar r such that

$$
u \times(v \times w)=r[(u \cdot w) v-(u \cdot v) w]
$$

(b) By considering some simple examples, deduce that $r=1$ in the previous identity

