Assignment #6

Due on Wednesday, October 3, 2018

Read Section 4.2 on *Continuity and Limits* in Baxandall and Liebek's text (pp. 185–188).

Read Section 3.3 on *Continuous Functions* in the class Lecture Notes at http://pages.pomona.edu/~ajr04747/.

Background and Definitions

- (Continuous Function) Let U denote an open subset of \mathbb{R}^n . A function $F: U \to \mathbb{R}^m$ is said to be continuous at $v \in U$ if and only if $\lim_{\|w-v\| \to 0} \|F(w) F(v)\| = 0$.
- (Image) If $A \subseteq U$, the image of A under the map $F: U \to \mathbb{R}^m$, denoted by F(A), is defined as the set $F(A) = \{w \in \mathbb{R}^m \mid w = F(v) \text{ for some } v \in A\}$.
- (Pre-image) If $B \subseteq \mathbb{R}^m$, the pre-image of B under the map $F: U \to \mathbb{R}^m$, denoted by $F^{-1}(B)$, is defined as the set $F^{-1}(B) = \{v \in U \mid F(v) \in B\}$. Note that $F^{-1}(B)$ is always defined even if F does not have an inverse map.

Do the following problems

1. Use the triangle inequality to prove that, for any v and w in \mathbb{R}^n ,

$$|||v|| - ||w|| \le ||v - w||.$$

Use this inequality to deduce that the function $f: \mathbb{R}^n \to \mathbb{R}$ given by

$$f(v) = ||v||$$
 for all $v \in \mathbb{R}^n$

is continuous on \mathbb{R}^n .

2. Let f and g denote two real-valued functions defined on an open region, D, in \mathbb{R}^2 . Prove that the vector field $F \colon D \to \mathbb{R}^2$, defined by

$$F\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} f(x,y) \\ g(x,y) \end{pmatrix}$$
 for all $\begin{pmatrix} x \\ y \end{pmatrix} \in D$,

is continuous on D if and only f and g are both continuous on D.

- 3. Let U denote an open subset of \mathbb{R}^n and let $F:U\to\mathbb{R}^m$ and $G:U\to\mathbb{R}^m$ be two given functions.
 - (a) Explain how the sum F + G is defined.
 - (b) Prove that if both F and G are continuous on U, then their sum is also continuous.

(Suggestion: Use the triangle inequality.)

4. In each of the following, given the function $F: U \to \mathbb{R}^m$ and the set B, compute the pre-image $F^{-1}(B)$.

(a)
$$F: \mathbb{R}^2 \to \mathbb{R}^2$$
, $F\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x^2 + y^2 \\ x^2 - y^2 \end{pmatrix}$, and $B = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$.

(b) Let $D = \mathbb{R}^2 \setminus \{(0,0)\} = \{(x,y) \in \mathbb{R}^2 \mid x^2+y^2>0\}$ (the punctured plane), and define $f\colon D\to \mathbb{R}$ by

$$f(x,y) = \frac{1}{\sqrt{x^2 + y^2}}, \text{ for } (x,y) \in D.$$

Put
$$B = \{2\}.$$

- (c) $f: D \to \mathbb{R}$ is as in part (b), and $B = \{0\}$.
- 5. Compute the image of the given sets under the following maps:
 - (a) $\sigma: \mathbb{R} \to \mathbb{R}^2$, $\sigma(t) = (\cos t, \sin t)$ for all $t \in \mathbb{R}$. Compute $\sigma(\mathbb{R})$.
 - (b) $f \colon D \to \mathbb{R}$ and D are as given in part (b) of the previous problem. Compute f(D).