Assignment \#8

Due on Wednesday, October 10, 2018
Read Section 4.3 on Differentiability, pp. 189-195, in Baxandall and Liebek's text.
Read Section 4.1 on Definition of Differentiability in the class Lecture Notes at http://pages.pomona.edu/~ajr04747/.
Read Section 4.2 on The Derivative in the class Lecture Notes at http://pages.pomona.edu/~ajr04747/.
Read Section 4.3 on Differentiable Scalar Fields in the class Lecture Notes at http://pages.pomona.edu/~ajr04747/.

Do the following problems

1. Let f denote a real valued function defined on some open interval around $a \in \mathbb{R}$. Consider a line of slope m and equation

$$
L(x)=f(a)+m(x-a) \text { for all } x \in \mathbb{R} .
$$

Suppose that this line if the best approximation to the function f at a in the sense that

$$
\lim _{x \rightarrow a} \frac{|E(x)|}{|x-a|}=0
$$

where $E(x)=f(x)-L(x)$ for all x in the interval in which f is defined. Prove that f is differentiable at a, and that $f^{\prime}(a)=m$.
2. Let U be an open subset for \mathbb{R}^{n}. A function $F: U \rightarrow \mathbb{R}^{m}$ is said to be differentiable at $u \in U$ if and only if there exists a unique linear transformation $T_{u}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that

$$
\lim _{\|v-u\| \rightarrow 0} \frac{\left\|F(v)-F(u)-T_{u}(v-u)\right\|}{\|v-u\|}=0 .
$$

Prove that if F is differentiable at u, then it is also continuous at u. Give an example that shows that the converse of this assertion is not true.
3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=\sqrt{|x y|}$ for all $(x, y) \in \mathbb{R}^{2}$. Show that f is not differentiable at $(0,0)$.
4. Is $f(x, y, z)=x \sqrt{y^{2}+z^{2}}$ differentiable at $(0,0,0)$? Prove your assertion.
5. Is the scalar field

$$
f(x, y)= \begin{cases}\frac{x y}{\sqrt{x^{2}+y^{2}}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

continuous at the origin? Is it differentiable at the origin?

