Review Problems for Exam 1

- 1. Compute the (shortest) distance from the point P(4,0,-7) in \mathbb{R}^3 to the plane given by 4x y 3z = 12.
- 2. Compute the (shortest) distance from the point P(4,0,-7) in \mathbb{R}^3 to the line given by the parametric equations

$$\begin{cases} x = -1 + 4t, \\ y = -7t, \\ z = 2 - t. \end{cases}$$

- 3. Compute the area of the triangle whose vertices in \mathbb{R}^3 are the points (1,1,0), (2,0,1) and (0,3,1)
- 4. Let v and w be two vectors in \mathbb{R}^3 , and let λ be a scalar. Show that the area of the parallelogram determined by the vectors v and $w + \lambda v$ is the same as that determined by v and w.
- 5. Let \widehat{u} denote a unit vector in \mathbb{R}^n and $P_{\widehat{u}}(v)$ denote the orthogonal projection of v along the direction of \widehat{u} for any vector $v \in \mathbb{R}^n$. Use the Cauchy–Schwarz inequality to prove that the map

$$v \mapsto P_{\widehat{u}}(v)$$
 for all $v \in \mathbb{R}^n$

is a continuous map from \mathbb{R}^n to \mathbb{R}^n .

- 6. Define $f: \mathbb{R}^2 \to \mathbb{R}$ by $f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$ Prove that f is continuous at (0,0).
- 7. Show that

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

is not continuous at (0,0).

8. Determine the value of L that would make the function

$$f(x,y) = \begin{cases} x \sin\left(\frac{1}{y}\right) & \text{if } y \neq 0; \\ L & \text{otherwise ,} \end{cases}$$

continuous at (0,0). Is $f: \mathbb{R}^2 \to \mathbb{R}$ continuous on \mathbb{R}^2 ? Justify your answer.

- 9. Define the scalar field $f: \mathbb{R}^n \to \mathbb{R}$ by $f(v) = \frac{1}{2} ||v||^2$ for all $v \in \mathbb{R}^n$. Show that f is differentiable on \mathbb{R}^n and compute the linear map $Df(u): \mathbb{R}^n \to \mathbb{R}$ for all $u \in \mathbb{R}^n$. What is the gradient of f at u for all $x \in \mathbb{R}^n$?
- 10. Let $g: [0, \infty) \to \mathbb{R}$ be a differentiable, real-valued function of a single variable, and let f(x, y) = g(r) where $r = \sqrt{x^2 + y^2}$.
 - (a) Compute $\frac{\partial r}{\partial x}$ in terms of x and r, and $\frac{\partial r}{\partial y}$ in terms of y and r.
 - (b) Compute ∇f in terms of g'(r), r and the vector $\mathbf{r} = x\hat{i} + y\hat{j}$.
- 11. Let $f: U \to \mathbb{R}$ denote a scalar field defined on an open subset U of \mathbb{R}^n , and let \widehat{u} be a unit vector in \mathbb{R}^n . If the limit

$$\lim_{t \to 0} \frac{f(v + t\widehat{u}) - f(v)}{t}$$

exists, we call it the directional derivative of f at v in the direction of the unit vector \hat{u} . We denote it by $D_{\hat{u}}f(v)$.

(a) Show that if f is differentiable at $v \in U$, then, for any unit vector \widehat{u} in \mathbb{R}^n , the directional derivative of f in the direction of \widehat{u} at v exists, and

$$D_{\widehat{u}}f(v) = \nabla f(v) \cdot \widehat{u},$$

where $\nabla f(v)$ is the gradient of f at v.

- (b) Suppose that $f: U \to \mathbb{R}$ is differentiable at $v \in U$. Prove that if $D_{\widehat{u}}f(v) = 0$ for every unit vector \widehat{u} in \mathbb{R}^n , then $\nabla f(v)$ must be the zero vector.
- (c) Suppose that $f: U \to \mathbb{R}$ is differentiable at $v \in U$. Use the Cauchy–Schwarz inequality to show that the largest value of $D_{\widehat{u}}f(v)$ is $\|\nabla f(v)\|$ and it occurs when \widehat{u} is in the direction of $\nabla f(v)$.