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Solutions to Review Problems for Exam 1

1. Compute the (shortest) distance from the point P (4, 0,−7) in R3 to the plane
given by

4x− y − 3z = 12.

Solution: The point Po(3, 0, 0) is in the plane. Let

w =
−−→
PoP =

 1
0
−7



The vector n =

 4
−1
−3

 is orthogonal to the plane. To find the

shortest distance, d, from P to the plane, we compute the norm of
the orthogonal projection of w onto n; that is,

d = ‖P
n̂
(w)‖,

where

n̂ =
1√
26

 4
−1
−3

 ,

a unit vector in the direction of n, and

P
n̂
(w) = (w · n̂)n̂.

It then follows that
d = |w · n̂|,

where w · n̂ =
1√
26

(4 + 21) =
25√
26
. Hence, d =

25
√

26

26
≈ 4.9. �

2. Compute the (shortest) distance from the point P (4, 0,−7) in R3 to the line
given by the parametric equations

x = −1 + 4t,
y = −7t,
z = 2− t.
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Solution: The point Po(−1, 0, 2) is on the line. The vector

v =

 4
−7
−1


gives the direction of the line. Put

w =
−−→
PoP =

 5
0
−9

 .

The vectors v and w determine a parallelogram whose area is the norm
of v times the shortest distance, d, from P to the line determined by
v at Po. We then have that

area(P (v, w)) = ‖v‖d,

from which we get that

d =
area(P (v, w))

‖v‖
.

On the other hand,

area(P (v, w)) = ‖v × w‖,

where

v × w =

∣∣∣∣∣∣
î ĵ k̂
4 −7 −1
5 0 −9

∣∣∣∣∣∣ = 63̂i+ 31ĵ + 35k̂.

Thus, ‖v × w‖ =
√

(63)2 + (31)2 + (35)2 =
√

6155 and therefore

d =

√
6155√
66
≈ 9.7.

�

3. Compute the area of the triangle whose vertices in R3 are the points (1, 1, 0),
(2, 0, 1) and (0, 3, 1)
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Solution: Label the points Po(1, 1, 0), P1(2, 0, 1) and P2(0, 3, 1) and
define the vectors

v =
−−→
PoP1 =

 1
−1

1

 and w =
−−→
PoP2 =

−1
2
1

 .

The area of the triangle determined by the points Po, P1 and P2 is
then half of the area of the parallelogram determined by the vectors
v and w. Thus,

area(4PoP1P2) =
1

2
‖v × w‖,

where

v × w =

∣∣∣∣∣∣
î ĵ k̂
1 −1 1
−1 2 1

∣∣∣∣∣∣ = −3̂i− 2ĵ + k̂.

Consequently, area(4PoP1P2) =
1

2

√
9 + 4 + 1 =

√
14

2
≈ 1.87. �

4. Let v and w be two vectors in R3, and let λ be a scalar. Show that the area of
the parallelogram determined by the vectors v and w + λv is the same as that
determined by v and w.

Solution: The area of the parallelogram determined by v and w+λv
is

area(P (v, w + λv)) = ‖v × (w + λv)‖,

where
v × (w + λv) = v × w + λv × v = v × w.

Consequently, area(P (v, w + λv)) = ‖v × w‖ = area(P (v, w)). �

5. Let û denote a unit vector in Rn and Pû(v) denote the orthogonal projection
of v along the direction of û for any vector v ∈ Rn. Use the Cauchy–Schwarz
inequality to prove that the map

v 7→ Pû(v) for all v ∈ Rn

is a continuous map from Rn to Rn.
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Solution: Pû(v) = (v · û)û for all v ∈ Rn. Consequently, for any
w, v ∈ Rn,

Pû(w)− Pû(v) = (w · û)û− (v · û)û
= (w · û− v · û)û
= [(w − v) · û]û.

It then follows that

‖Pû(w)− Pû(v)‖ = |(w − v) · û|,

since ‖û‖ = 1. Hence, by the Cauchy–Schwarz inequality,

‖Pû(w)− Pû(v)‖ 6 ‖w − v‖.

Applying the Squeeze Theorem we then get that

lim
‖w−v‖→0

‖Pû(w)− Pû(v)‖ = 0,

which shows that Pû is continuous at every v ∈ V . �

6. Define f : R2 → R by

f(x, y) =


x2y

x2 + y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0).

Prove that f is continuous at (0, 0).

Solution: For (x, y) 6= (0, 0)

|f(x, y)| =
x2|y|
x2 + y2

6 |y|,

since x2 6 x2 + y2 for all (x, y) ∈ R2. We then have that, for (x, y) 6=
(0, 0),

|f(x, y)| 6
√
x2 + y2,

which implies that

0 6 |f(x, y)− f(0, 0)| 6 ‖(x, y)− (0, 0)‖,
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for (x, y) 6= (0, 0). Thus, by the Squeeze Theorem,

lim
‖(x,y)−(0,0)‖→0

|f(x, y)− f(0, 0)| = 0,

which shows that f is continuous at (0, 0). �

7. Show that

f(x, y) =


x2 − y2

x2 + y2
, (x, y) 6= (0, 0)

0, (x, y) = (0, 0)

is not continuous at (0, 0).

Solution: Let σ1(t) = (t, t) for all t ∈ R and observe that

lim
t→0

σ1(t) = (0, 0)

and
f(σ(t)) = 0, for all t 6= 0.

It then follows that
lim
t→0

f(σ1(t)) = 0.

Thus, if f were continuous at (0, 0), we would have that

f(0, 0) = 0. (1)

On the other hand, if we let σ2(t) = (t, 0), we would have that

lim
t→0

σ2(t) = (0, 0)

and
f(σ(t)) = 1, for all t 6= 0.

Thus, if f were continuous at (0, 0), we would have that

f(0, 0) = 1,

which is in contradiction with (1). This contradiction shows that f
is not continuous at (0, 0). �
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8. Determine the value of L that would make the function

f(x, y) =


x sin

(
1

y

)
if y 6= 0;

L otherwise ,

continuous at (0, 0). Is f : R2 → R continuous on R2? Justify your answer.

Solution: Observe that, for y 6= 0,

|f(x, y)| =

∣∣∣∣x sin

(
1

y

)∣∣∣∣
= |x|

∣∣∣∣sin(1

y

)∣∣∣∣
6 |x|

6
√
x2 + y2.

It then follows that, for y 6= 0,

0 6 |f(x, y)| 6 ‖(x, y)‖.

Consequently, by the Squeeze Theorem,

lim
‖(x,y)‖→0

|f(x, y)| = 0.

This suggests that we define L = 0. If this is the case,

lim
‖(x,y)‖→0

|f(x, y)− f(0, 0)| = 0,

which shows that f is continuous at (0, 0) if L = 0.

Next, assume now that L = 0 in the definition of f . Then, for any
a 6= 0, f fails for be continuous at (a, 0). To see why this is case, note
that for any y 6= 0

f(a, y) = a sin

(
1

y

)
and the limit of sin

(
1

y

)
as y → 0 does not exist. �
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9. Define the scalar field f : Rn → R by f(v) =
1

2
‖v‖2 for all v ∈ Rn. Show that

f is differentiable on Rn and compute the linear map Df(u) : Rn → R for all
u ∈ Rn. What is the gradient of f at u for all x ∈ Rn?

Solution: Let u and w be any vector in Rn and consider

f(u+ w) =
1

2
‖u+ w‖2

=
1

2
(u+ w) · (u+ w)

=
1

2
u · u+ u · w +

1

2
w · w

=
1

2
‖u‖2 + u · w +

1

2
‖w‖2.

Thus,

f(u+ w)− f(u)− u · w =
1

2
‖w‖2.

Consequently,

|f(u+ w)− f(u)− u · w|
‖w‖

=
1

2
‖w‖,

for w ∈ Rn with ‖w‖ 6= 0, from which we get that

lim
‖w‖→0

|f(u+ w)− f(u)− u · w|
‖w‖

= 0,

and therefore f is differentiable at u with derivative map Df(u) given
by

Df(u)w = u · w for all w ∈ Rn.

Hence, ∇f(u) = u for all u ∈ Rn. �

10. Let g : [0,∞)→ R be a differentiable, real–valued function of a single variable,
and let f(x, y) = g(r) where r =

√
x2 + y2.

(a) Compute
∂r

∂x
in terms of x and r, and

∂r

∂y
in terms of y and r.
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Solution: Take the partial derivative of r2 = x2 + y2 on both
sides with respect to x to obtain

∂(r2)

∂x
= 2x.

Applying the chain rule on the left–hand side we get

2r
∂r

∂x
= 2x,

which leads to
∂r

∂x
=
x

r
.

Similarly,
∂r

∂y
=
y

r
. �

(b) Compute ∇f in terms of g′(r), r and the vector r = x̂i+ yĵ.

Solution: Take the partial derivative of f(x, y) = g(r) on both
sides with respect to x and apply the Chain Rule to obtain

∂f

∂x
= g′(r)

∂r

∂x
= g′(r)

x

r
.

Similarly,
∂f

∂y
= g′(r)

y

r
.

It then follows that

∇f =
∂f

∂x
î+

∂f

∂y
ĵ

= g′(r)
x

r
î+ g′(r)

y

r
ĵ

=
g′(r)

r
(x̂i+ yĵ)

=
g′(r)

r
r.

�

11. Let f : U → R denote a scalar field defined on an open subset U of Rn, and let
û be a unit vector in Rn. If the limit

lim
t→0

f(v + tû)− f(v)

t

exists, we call it the directional derivative of f at v in the direction of the unit
vector û. We denote it by Dûf(v).
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(a) Show that if f is differentiable at v ∈ U , then, for any unit vector û in Rn,
the directional derivative of f in the direction of û at v exists, and

Dûf(v) = ∇f(v) · û,

where ∇f(v) is the gradient of f at v.

Proof: Suppose that f is differentiable at v ∈ U . Then,

f(v + w) = f(v) +Df(v)w + E(w),

where
Df(v)w = ∇f(v) · w,

and

lim
‖w‖→0

|E(w)|
‖w‖

= 0.

Thus, for any t ∈ R,

f(v + tû) = f(v) + t∇f(v) · û+ E(tû),

where

lim
|t|→0

|E(tû)|
|t|

= 0,

since ‖tû‖ = |t|‖û‖ = |t|.
We then have that, for t 6= 0,

f(v + tû)− f(v)

t
−∇f(v) · û =

E(tû)

t
,

and consequently∣∣∣∣f(v + tû)− f(v)

t
−∇f(v) · û

∣∣∣∣ =
|E(tû)|
|t|

,

from which we get that

lim
t→0

∣∣∣∣f(v + tû)− f(v)

t
−∇f(v) · û

∣∣∣∣ = 0.

(b) Suppose that f : U → R is differentiable at v ∈ U . Prove that if Dûf(v) =
0 for every unit vector û in Rn, then ∇f(v) must be the zero vector.
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Proof: Suppose, by way of contradiction, that ∇f(v) 6= 0, and put

û =
1

‖∇f(v)‖
∇f(v).

Then, û is a unit vector, and therefore, by the assumption,

Dûf(v) = 0,

or
∇f(v) · û = 0.

But this implies that

∇f(v) · 1

‖∇f(v)‖
∇f(v) = 0,

where

∇f(v) · 1

‖∇f(v)‖
∇f(v) =

1

‖∇f(v)‖
∇f(v) · ∇f(v)

=
1

‖∇f(v)‖
‖∇f(v)‖2

= ‖∇f(v)‖.

It then follows that ‖∇f(v)‖ = 0, which contradicts the assumption that
∇f(v) 6= 0. Therefore, ∇f(v) must be the zero vector.

(c) Suppose that f : U → R is differentiable at v ∈ U . Use the Cauchy–
Schwarz inequality to show that the largest value of Dûf(v) is ‖∇f(v)‖
and it occurs when û is in the direction of ∇f(v).

Proof. If f is differentiable at x, then Dûf(x) = ∇f(x) · û, as was shown
in part (a). Thus, by the Cauchy–Schwarz inequality,

|Dûf(x)| 6 ‖∇f(x)‖‖û‖ = ‖∇f(x)‖,

since û is a unit vector. Hence,

−‖∇f(x)‖ 6 Dûf(x) 6 ‖∇f(x)‖

for any unit vector û, and so the largest value that Dûf(x) can have is
‖∇f(x)‖.
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If ∇f(x) 6= 0, then û =
1

‖∇f(x)‖
∇f(x) is a unit vector, and

Dûf(x) = ∇f(x) · û

= ∇f(x) · 1

‖∇f(x)‖
∇f(x)

=
1

‖∇f(x)‖
∇f(x) · ∇f(x)

=
1

‖∇f(x)‖
‖∇f(x)‖2

= ‖∇f(x)‖.

Thus, Dûf(x) attains its largest value when û is in the direction of ∇f(x).


