Solutions to Review Problems for Exam 1

1. Compute the (shortest) distance from the point $P(4,0,-7)$ in \mathbb{R}^{3} to the plane given by

$$
4 x-y-3 z=12
$$

Solution: The point $P_{o}(3,0,0)$ is in the plane. Let

$$
w=\overrightarrow{P_{o} P}=\left(\begin{array}{c}
1 \\
0 \\
-7
\end{array}\right)
$$

The vector $n=\left(\begin{array}{c}4 \\ -1 \\ -3\end{array}\right) \quad$ is orthogonal to the plane. To find the shortest distance, d, from P to the plane, we compute the norm of the orthogonal projection of w onto n; that is,

$$
d=\left\|\mathrm{P}_{\widehat{n}}(w)\right\|,
$$

where

$$
\widehat{n}=\frac{1}{\sqrt{26}}\left(\begin{array}{c}
4 \\
-1 \\
-3
\end{array}\right)
$$

a unit vector in the direction of n, and

$$
\mathrm{P}_{\widehat{n}}(w)=(w \cdot \widehat{n}) \widehat{n} .
$$

It then follows that

$$
d=|w \cdot \widehat{n}|
$$

where $w \cdot \widehat{n}=\frac{1}{\sqrt{26}}(4+21)=\frac{25}{\sqrt{26}}$. Hence, $d=\frac{25 \sqrt{26}}{26} \approx 4.9$.
2. Compute the (shortest) distance from the point $P(4,0,-7)$ in \mathbb{R}^{3} to the line given by the parametric equations

$$
\left\{\begin{array}{l}
x=-1+4 t \\
y=-7 t \\
z=2-t
\end{array}\right.
$$

Solution: The point $P_{o}(-1,0,2)$ is on the line. The vector

$$
v=\left(\begin{array}{c}
4 \\
-7 \\
-1
\end{array}\right)
$$

gives the direction of the line. Put

$$
w=\overrightarrow{P_{o} P}=\left(\begin{array}{c}
5 \\
0 \\
-9
\end{array}\right)
$$

The vectors v and w determine a parallelogram whose area is the norm of v times the shortest distance, d, from P to the line determined by v at P_{o}. We then have that

$$
\operatorname{area}(P(v, w))=\|v\| d
$$

from which we get that

$$
d=\frac{\operatorname{area}(P(v, w))}{\|v\|}
$$

On the other hand,

$$
\operatorname{area}(P(v, w))=\|v \times w\|
$$

where

$$
v \times w=\left|\begin{array}{ccc}
\widehat{i} & \widehat{j} & \widehat{k} \\
4 & -7 & -1 \\
5 & 0 & -9
\end{array}\right|=63 \widehat{i}+31 \widehat{j}+35 \widehat{k}
$$

Thus, $\|v \times w\|=\sqrt{(63)^{2}+(31)^{2}+(35)^{2}}=\sqrt{6155}$ and therefore

$$
d=\frac{\sqrt{6155}}{\sqrt{66}} \approx 9.7
$$

3. Compute the area of the triangle whose vertices in \mathbb{R}^{3} are the points $(1,1,0)$, $(2,0,1)$ and $(0,3,1)$

Solution: Label the points $P_{o}(1,1,0), P_{1}(2,0,1)$ and $P_{2}(0,3,1)$ and define the vectors

$$
v=\overrightarrow{P_{o} P_{1}}=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right) \quad \text { and } \quad w=\overrightarrow{P_{o} P_{2}}=\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right) .
$$

The area of the triangle determined by the points P_{o}, P_{1} and P_{2} is then half of the area of the parallelogram determined by the vectors v and w. Thus,

$$
\operatorname{area}\left(\triangle P_{o} P_{1} P_{2}\right)=\frac{1}{2}\|v \times w\|
$$

where

$$
v \times w=\left|\begin{array}{ccc}
\widehat{i} & \widehat{j} & \widehat{k} \\
1 & -1 & 1 \\
-1 & 2 & 1
\end{array}\right|=-3 \widehat{i}-2 \widehat{j}+\widehat{k}
$$

Consequently, $\operatorname{area}\left(\triangle P_{o} P_{1} P_{2}\right)=\frac{1}{2} \sqrt{9+4+1}=\frac{\sqrt{14}}{2} \approx 1.87$.
4. Let v and w be two vectors in \mathbb{R}^{3}, and let λ be a scalar. Show that the area of the parallelogram determined by the vectors v and $w+\lambda v$ is the same as that determined by v and w.

Solution: The area of the parallelogram determined by v and $w+\lambda v$ is

$$
\operatorname{area}(P(v, w+\lambda v))=\|v \times(w+\lambda v)\|
$$

where

$$
v \times(w+\lambda v)=v \times w+\lambda v \times v=v \times w .
$$

Consequently, $\operatorname{area}(P(v, w+\lambda v))=\|v \times w\|=\operatorname{area}(P(v, w))$.
5. Let \widehat{u} denote a unit vector in \mathbb{R}^{n} and $P_{\widehat{u}}(v)$ denote the orthogonal projection of v along the direction of \widehat{u} for any vector $v \in \mathbb{R}^{n}$. Use the Cauchy-Schwarz inequality to prove that the map

$$
v \mapsto P_{\widehat{u}}(v) \quad \text { for all } v \in \mathbb{R}^{n}
$$

is a continuous map from \mathbb{R}^{n} to \mathbb{R}^{n}.

Solution: $P_{\widehat{u}}(v)=(v \cdot \widehat{u}) \widehat{u}$ for all $v \in \mathbb{R}^{n}$. Consequently, for any $w, v \in \mathbb{R}^{n}$,

$$
\begin{aligned}
P_{\widehat{u}}(w)-P_{\widehat{u}}(v) & =(w \cdot \widehat{u}) \widehat{u}-(v \cdot \widehat{u}) \widehat{u} \\
& =(w \cdot \widehat{u}-v \cdot \widehat{u}) \widehat{u} \\
& =[(w-v) \cdot \widehat{u}] \widehat{u}
\end{aligned}
$$

It then follows that

$$
\left\|P_{\widehat{u}}(w)-P_{\widehat{u}}(v)\right\|=|(w-v) \cdot \widehat{u}|,
$$

since $\|\widehat{u}\|=1$. Hence, by the Cauchy-Schwarz inequality,

$$
\left\|P_{\widehat{u}}(w)-P_{\widehat{u}}(v)\right\| \leqslant\|w-v\| .
$$

Applying the Squeeze Theorem we then get that

$$
\lim _{\|w-v\| \rightarrow 0}\left\|P_{\widehat{u}}(w)-P_{\widehat{u}}(v)\right\|=0
$$

which shows that $P_{\widehat{u}}$ is continuous at every $v \in V$.
6. Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(x, y)= \begin{cases}\frac{x^{2} y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Prove that f is continuous at $(0,0)$.
Solution: For $(x, y) \neq(0,0)$

$$
\begin{aligned}
|f(x, y)| & =\frac{x^{2}|y|}{x^{2}+y^{2}} \\
& \leqslant|y|
\end{aligned}
$$

since $x^{2} \leqslant x^{2}+y^{2}$ for all $(x, y) \in \mathbb{R}^{2}$. We then have that, for $(x, y) \neq$ $(0,0)$,

$$
|f(x, y)| \leqslant \sqrt{x^{2}+y^{2}}
$$

which implies that

$$
0 \leqslant|f(x, y)-f(0,0)| \leqslant\|(x, y)-(0,0)\|
$$

for $(x, y) \neq(0,0)$. Thus, by the Squeeze Theorem,

$$
\lim _{\|(x, y)-(0,0)\| \rightarrow 0}|f(x, y)-f(0,0)|=0
$$

which shows that f is continuous at $(0,0)$.
7. Show that

$$
f(x, y)= \begin{cases}\frac{x^{2}-y^{2}}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

is not continuous at $(0,0)$.
Solution: Let $\sigma_{1}(t)=(t, t)$ for all $t \in \mathbb{R}$ and observe that

$$
\lim _{t \rightarrow 0} \sigma_{1}(t)=(0,0)
$$

and

$$
f(\sigma(t))=0, \quad \text { for all } t \neq 0
$$

It then follows that

$$
\lim _{t \rightarrow 0} f\left(\sigma_{1}(t)\right)=0
$$

Thus, if f were continuous at $(0,0)$, we would have that

$$
\begin{equation*}
f(0,0)=0 . \tag{1}
\end{equation*}
$$

On the other hand, if we let $\sigma_{2}(t)=(t, 0)$, we would have that

$$
\lim _{t \rightarrow 0} \sigma_{2}(t)=(0,0)
$$

and

$$
f(\sigma(t))=1, \quad \text { for all } t \neq 0
$$

Thus, if f were continuous at $(0,0)$, we would have that

$$
f(0,0)=1,
$$

which is in contradiction with (1). This contradiction shows that f is not continuous at $(0,0)$.
8. Determine the value of L that would make the function

$$
f(x, y)= \begin{cases}x \sin \left(\frac{1}{y}\right) & \text { if } y \neq 0 \\ L & \text { otherwise }\end{cases}
$$

continuous at $(0,0)$. Is $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ continuous on \mathbb{R}^{2} ? Justify your answer.
Solution: Observe that, for $y \neq 0$,

$$
\begin{aligned}
|f(x, y)| & =\left|x \sin \left(\frac{1}{y}\right)\right| \\
& =|x|\left|\sin \left(\frac{1}{y}\right)\right| \\
& \leqslant|x| \\
& \leqslant \sqrt{x^{2}+y^{2}}
\end{aligned}
$$

It then follows that, for $y \neq 0$,

$$
0 \leqslant|f(x, y)| \leqslant\|(x, y)\|
$$

Consequently, by the Squeeze Theorem,

$$
\lim _{\|(x, y)\| \rightarrow 0}|f(x, y)|=0
$$

This suggests that we define $L=0$. If this is the case,

$$
\lim _{\|(x, y)\| \rightarrow 0}|f(x, y)-f(0,0)|=0
$$

which shows that f is continuous at $(0,0)$ if $L=0$.
Next, assume now that $L=0$ in the definition of f. Then, for any $a \neq 0, f$ fails for be continuous at $(a, 0)$. To see why this is case, note that for any $y \neq 0$

$$
f(a, y)=a \sin \left(\frac{1}{y}\right)
$$

and the limit of $\sin \left(\frac{1}{y}\right)$ as $y \rightarrow 0$ does not exist.
9. Define the scalar field $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $f(v)=\frac{1}{2}\|v\|^{2}$ for all $v \in \mathbb{R}^{n}$. Show that f is differentiable on \mathbb{R}^{n} and compute the linear map $D f(u): \mathbb{R}^{n} \rightarrow \mathbb{R}$ for all $u \in \mathbb{R}^{n}$. What is the gradient of f at u for all $x \in \mathbb{R}^{n}$?

Solution: Let u and w be any vector in \mathbb{R}^{n} and consider

$$
\begin{aligned}
f(u+w) & =\frac{1}{2}\|u+w\|^{2} \\
& =\frac{1}{2}(u+w) \cdot(u+w) \\
& =\frac{1}{2} u \cdot u+u \cdot w+\frac{1}{2} w \cdot w \\
& =\frac{1}{2}\|u\|^{2}+u \cdot w+\frac{1}{2}\|w\|^{2} .
\end{aligned}
$$

Thus,

$$
f(u+w)-f(u)-u \cdot w=\frac{1}{2}\|w\|^{2} .
$$

Consequently,

$$
\frac{|f(u+w)-f(u)-u \cdot w|}{\|w\|}=\frac{1}{2}\|w\|,
$$

for $w \in \mathbb{R}^{n}$ with $\|w\| \neq 0$, from which we get that

$$
\lim _{\|w\| \rightarrow 0} \frac{|f(u+w)-f(u)-u \cdot w|}{\|w\|}=0
$$

and therefore f is differentiable at u with derivative map $D f(u)$ given by

$$
D f(u) w=u \cdot w \quad \text { for all } w \in \mathbb{R}^{n} .
$$

Hence, $\nabla f(u)=u$ for all $u \in \mathbb{R}^{n}$.
10. Let $g:[0, \infty) \rightarrow \mathbb{R}$ be a differentiable, real-valued function of a single variable, and let $f(x, y)=g(r)$ where $r=\sqrt{x^{2}+y^{2}}$.
(a) Compute $\frac{\partial r}{\partial x}$ in terms of x and r, and $\frac{\partial r}{\partial y}$ in terms of y and r.

Solution: Take the partial derivative of $r^{2}=x^{2}+y^{2}$ on both sides with respect to x to obtain

$$
\frac{\partial\left(r^{2}\right)}{\partial x}=2 x
$$

Applying the chain rule on the left-hand side we get

$$
2 r \frac{\partial r}{\partial x}=2 x
$$

which leads to

$$
\frac{\partial r}{\partial x}=\frac{x}{r} .
$$

Similarly, $\frac{\partial r}{\partial y}=\frac{y}{r}$.
(b) Compute ∇f in terms of $g^{\prime}(r), r$ and the vector $\mathbf{r}=x \widehat{i}+y \widehat{j}$.

Solution: Take the partial derivative of $f(x, y)=g(r)$ on both sides with respect to x and apply the Chain Rule to obtain

$$
\frac{\partial f}{\partial x}=g^{\prime}(r) \frac{\partial r}{\partial x}=g^{\prime}(r) \frac{x}{r}
$$

Similarly, $\frac{\partial f}{\partial y}=g^{\prime}(r) \frac{y}{r}$.
It then follows that

$$
\begin{aligned}
\nabla f & =\frac{\partial f}{\partial x} \widehat{i}+\frac{\partial f}{\partial y} \widehat{j} \\
& =g^{\prime}(r) \frac{x}{r} \widehat{i}+g^{\prime}(r) \frac{y}{r} \widehat{j} \\
& =\frac{g^{\prime}(r)}{r}(\widehat{x}+y \widehat{j}) \\
& =\frac{g^{\prime}(r)}{r} \mathbf{r} .
\end{aligned}
$$

11. Let $f: U \rightarrow \mathbb{R}$ denote a scalar field defined on an open subset U of \mathbb{R}^{n}, and let \widehat{u} be a unit vector in \mathbb{R}^{n}. If the limit

$$
\lim _{t \rightarrow 0} \frac{f(v+t \widehat{u})-f(v)}{t}
$$

exists, we call it the directional derivative of f at v in the direction of the unit vector \widehat{u}. We denote it by $D_{\widehat{u}} f(v)$.
(a) Show that if f is differentiable at $v \in U$, then, for any unit vector \widehat{u} in \mathbb{R}^{n}, the directional derivative of f in the direction of \widehat{u} at v exists, and

$$
D_{\widehat{u}} f(v)=\nabla f(v) \cdot \widehat{u},
$$

where $\nabla f(v)$ is the gradient of f at v.
Proof: Suppose that f is differentiable at $v \in U$. Then,

$$
f(v+w)=f(v)+D f(v) w+E(w)
$$

where

$$
D f(v) w=\nabla f(v) \cdot w
$$

and

$$
\lim _{\|w\| \rightarrow 0} \frac{|E(w)|}{\|w\|}=0
$$

Thus, for any $t \in \mathbb{R}$,

$$
f(v+t \widehat{u})=f(v)+t \nabla f(v) \cdot \widehat{u}+E(t \widehat{u}),
$$

where

$$
\lim _{|t| \rightarrow 0} \frac{|E(t \widehat{u})|}{|t|}=0
$$

since $\|t \widehat{u}\|=|t|\|\widehat{u}\|=|t|$.
We then have that, for $t \neq 0$,

$$
\frac{f(v+t \widehat{u})-f(v)}{t}-\nabla f(v) \cdot \widehat{u}=\frac{E(t \widehat{u})}{t}
$$

and consequently

$$
\left|\frac{f(v+t \widehat{u})-f(v)}{t}-\nabla f(v) \cdot \widehat{u}\right|=\frac{|E(t \widehat{u})|}{|t|},
$$

from which we get that

$$
\lim _{t \rightarrow 0}\left|\frac{f(v+t \widehat{u})-f(v)}{t}-\nabla f(v) \cdot \widehat{u}\right|=0
$$

(b) Suppose that $f: U \rightarrow \mathbb{R}$ is differentiable at $v \in U$. Prove that if $D_{\widehat{u}} f(v)=$ 0 for every unit vector \widehat{u} in \mathbb{R}^{n}, then $\nabla f(v)$ must be the zero vector.

Proof: Suppose, by way of contradiction, that $\nabla f(v) \neq \mathbf{0}$, and put

$$
\widehat{u}=\frac{1}{\|\nabla f(v)\|} \nabla f(v)
$$

Then, \widehat{u} is a unit vector, and therefore, by the assumption,

$$
D_{\widehat{u}} f(v)=0,
$$

or

$$
\nabla f(v) \cdot \widehat{u}=0
$$

But this implies that

$$
\nabla f(v) \cdot \frac{1}{\|\nabla f(v)\|} \nabla f(v)=0
$$

where

$$
\begin{aligned}
\nabla f(v) \cdot \frac{1}{\|\nabla f(v)\|} \nabla f(v) & =\frac{1}{\|\nabla f(v)\|} \nabla f(v) \cdot \nabla f(v) \\
& =\frac{1}{\|\nabla f(v)\|}\|\nabla f(v)\|^{2} \\
& =\|\nabla f(v)\| .
\end{aligned}
$$

It then follows that $\|\nabla f(v)\|=0$, which contradicts the assumption that $\nabla f(v) \neq \mathbf{0}$. Therefore, $\nabla f(v)$ must be the zero vector.
(c) Suppose that $f: U \rightarrow \mathbb{R}$ is differentiable at $v \in U$. Use the CauchySchwarz inequality to show that the largest value of $D_{\widehat{u}} f(v)$ is $\|\nabla f(v)\|$ and it occurs when \widehat{u} is in the direction of $\nabla f(v)$.

Proof. If f is differentiable at x, then $D_{\widehat{u}} f(x)=\nabla f(x) \cdot \widehat{u}$, as was shown in part (a). Thus, by the Cauchy-Schwarz inequality,

$$
\left|D_{\widehat{u}} f(x)\right| \leqslant\|\nabla f(x)\|\|\widehat{u}\|=\|\nabla f(x)\|,
$$

since \widehat{u} is a unit vector. Hence,

$$
-\|\nabla f(x)\| \leqslant D_{\widehat{u}} f(x) \leqslant\|\nabla f(x)\|
$$

for any unit vector \widehat{u}, and so the largest value that $D_{\widehat{u}} f(x)$ can have is $\|\nabla f(x)\|$.

If $\nabla f(x) \neq \mathbf{0}$, then $\widehat{u}=\frac{1}{\|\nabla f(x)\|} \nabla f(x)$ is a unit vector, and

$$
\begin{aligned}
D_{\widehat{u}} f(x) & =\nabla f(x) \cdot \widehat{u} \\
& =\nabla f(x) \cdot \frac{1}{\|\nabla f(x)\|} \nabla f(x) \\
& =\frac{1}{\|\nabla f(x)\|} \nabla f(x) \cdot \nabla f(x) \\
& =\frac{1}{\|\nabla f(x)\|}\|\nabla f(x)\|^{2} \\
& =\|\nabla f(x)\| .
\end{aligned}
$$

Thus, $D_{\widehat{u}} f(x)$ attains its largest value when \widehat{u} is in the direction of $\nabla f(x)$.

