Solutions to Review Problems for Exam 1

1. Compute the (shortest) distance from the point P(4, 0, -7) in \mathbb{R}^3 to the plane given by

$$4x - y - 3z = 12$$

Solution: The point $P_o(3,0,0)$ is in the plane. Let

$$w = \overrightarrow{P_oP} = \begin{pmatrix} 1\\0\\-7 \end{pmatrix}$$

The vector $n = \begin{pmatrix} 4 \\ -1 \\ -3 \end{pmatrix}$ is orthogonal to the plane. To find the shortest distance, d, from P to the plane, we compute the norm of

shortest distance, a, from P to the plane, we compute the norm of the orthogonal projection of w onto n; that is,

$$d = \|\mathbf{P}_{\hat{n}}(w)\|,$$

where

$$\widehat{n} = \frac{1}{\sqrt{26}} \begin{pmatrix} 4\\ -1\\ -3 \end{pmatrix},$$

a unit vector in the direction of n, and

$$P_{\widehat{n}}(w) = (w \cdot \widehat{n})\widehat{n}.$$

It then follows that

$$d = |w \cdot \hat{n}|,$$

where
$$w \cdot \hat{n} = \frac{1}{\sqrt{26}}(4+21) = \frac{25}{\sqrt{26}}$$
. Hence, $d = \frac{25\sqrt{26}}{26} \approx 4.9$.

2. Compute the (shortest) distance from the point P(4, 0, -7) in \mathbb{R}^3 to the line given by the parametric equations

$$\begin{cases} x = -1 + 4t, \\ y = -7t, \\ z = 2 - t. \end{cases}$$

Solution: The point $P_o(-1, 0, 2)$ is on the line. The vector

$$v = \begin{pmatrix} 4\\ -7\\ -1 \end{pmatrix}$$

gives the direction of the line. Put

$$w = \overrightarrow{P_oP} = \begin{pmatrix} 5\\0\\-9 \end{pmatrix}.$$

The vectors v and w determine a parallelogram whose area is the norm of v times the shortest distance, d, from P to the line determined by v at P_o . We then have that

$$\operatorname{area}(P(v,w)) = \|v\|d,$$

from which we get that

$$d = \frac{\operatorname{area}(P(v,w))}{\|v\|}.$$

On the other hand,

$$\operatorname{area}(P(v,w)) = \|v \times w\|,$$

where

$$v \times w = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & -7 & -1 \\ 5 & 0 & -9 \end{vmatrix} = 63\hat{i} + 31\hat{j} + 35\hat{k}.$$

Thus, $||v \times w|| = \sqrt{(63)^2 + (31)^2 + (35)^2} = \sqrt{6155}$ and therefore

$$d = \frac{\sqrt{6155}}{\sqrt{66}} \approx 9.7.$$

3. Compute the area of the triangle whose vertices in \mathbb{R}^3 are the points (1, 1, 0), (2, 0, 1) and (0, 3, 1)

Solution: Label the points $P_o(1, 1, 0)$, $P_1(2, 0, 1)$ and $P_2(0, 3, 1)$ and define the vectors

$$v = \overrightarrow{P_oP_1} = \begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix}$$
 and $w = \overrightarrow{P_oP_2} = \begin{pmatrix} -1\\ 2\\ 1 \end{pmatrix}$.

The area of the triangle determined by the points P_o , P_1 and P_2 is then half of the area of the parallelogram determined by the vectors v and w. Thus,

$$\operatorname{area}(\triangle P_o P_1 P_2) = \frac{1}{2} \| v \times w \|,$$

 \sim

where

$$v \times w = \begin{vmatrix} i & j & k \\ 1 & -1 & 1 \\ -1 & 2 & 1 \end{vmatrix} = -3\hat{i} - 2\hat{j} + \hat{k}.$$

Consequently, area $(\triangle P_o P_1 P_2) = \frac{1}{2}\sqrt{9 + 4 + 1} = \frac{\sqrt{14}}{2} \approx 1.87.$

 $\overline{}$

4. Let v and w be two vectors in \mathbb{R}^3 , and let λ be a scalar. Show that the area of the parallelogram determined by the vectors v and $w + \lambda v$ is the same as that determined by v and w.

Solution: The area of the parallelogram determined by v and $w + \lambda v$ is

$$\operatorname{area}(P(v, w + \lambda v)) = \|v \times (w + \lambda v)\|,$$

where

$$v \times (w + \lambda v) = v \times w + \lambda v \times v = v \times w$$

Consequently, area $(P(v, w + \lambda v)) = ||v \times w|| = \operatorname{area}(P(v, w)).$

5. Let \hat{u} denote a unit vector in \mathbb{R}^n and $P_{\hat{u}}(v)$ denote the orthogonal projection of v along the direction of \hat{u} for any vector $v \in \mathbb{R}^n$. Use the Cauchy–Schwarz inequality to prove that the map

$$v \mapsto P_{\widehat{u}}(v) \quad \text{for all} \ v \in \mathbb{R}^n$$

is a continuous map from \mathbb{R}^n to \mathbb{R}^n .

Solution: $P_{\widehat{u}}(v) = (v \cdot \widehat{u})\widehat{u}$ for all $v \in \mathbb{R}^n$. Consequently, for any $w, v \in \mathbb{R}^n$,

$$P_{\widehat{u}}(w) - P_{\widehat{u}}(v) = (w \cdot \widehat{u})\widehat{u} - (v \cdot \widehat{u})\widehat{u}$$

= $(w \cdot \widehat{u} - v \cdot \widehat{u})\widehat{u}$
= $[(w - v) \cdot \widehat{u}]\widehat{u}.$

It then follows that

$$||P_{\widehat{u}}(w) - P_{\widehat{u}}(v)|| = |(w - v) \cdot \widehat{u}|,$$

since $\|\hat{u}\| = 1$. Hence, by the Cauchy–Schwarz inequality,

$$||P_{\widehat{u}}(w) - P_{\widehat{u}}(v)|| \leq ||w - v||.$$

Applying the Squeeze Theorem we then get that

$$\lim_{\|w-v\|\to 0} \|P_{\widehat{u}}(w) - P_{\widehat{u}}(v)\| = 0,$$

which shows that $P_{\hat{u}}$ is continuous at every $v \in V$.

6. Define $f \colon \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Prove that f is continuous at (0, 0).

Solution: For $(x, y) \neq (0, 0)$

$$|f(x,y)| = \frac{x^2|y|}{x^2 + y^2}$$
$$\leqslant |y|,$$

since $x^2 \leqslant x^2 + y^2$ for all $(x, y) \in \mathbb{R}^2$. We then have that, for $(x, y) \neq (0, 0)$,

 $|f(x,y)| \leqslant \sqrt{x^2 + y^2},$

which implies that

$$0 \leq |f(x,y) - f(0,0)| \leq ||(x,y) - (0,0)||,$$

for $(x, y) \neq (0, 0)$. Thus, by the Squeeze Theorem,

$$\lim_{\|(x,y)-(0,0)\|\to 0} |f(x,y) - f(0,0)| = 0,$$

which shows that f is continuous at (0, 0).

7. Show that

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

is not continuous at (0, 0).

Solution: Let $\sigma_1(t) = (t, t)$ for all $t \in \mathbb{R}$ and observe that

$$\lim_{t\to 0}\sigma_1(t)=(0,0)$$

and

$$f(\sigma(t)) = 0$$
, for all $t \neq 0$.

It then follows that

$$\lim_{t \to 0} f(\sigma_1(t)) = 0.$$

Thus, if f were continuous at (0,0), we would have that

$$f(0,0) = 0. (1)$$

On the other hand, if we let $\sigma_2(t) = (t, 0)$, we would have that

$$\lim_{t \to 0} \sigma_2(t) = (0,0)$$

and

$$f(\sigma(t)) = 1$$
, for all $t \neq 0$.

Thus, if f were continuous at (0,0), we would have that

$$f(0,0) = 1,$$

which is in contradiction with (1). This contradiction shows that f is not continuous at (0,0).

Math 67. Rumbos

8. Determine the value of L that would make the function

$$f(x,y) = \begin{cases} x \sin\left(\frac{1}{y}\right) & \text{if } y \neq 0; \\ L & \text{otherwise }, \end{cases}$$

continuous at (0,0). Is $f: \mathbb{R}^2 \to \mathbb{R}$ continuous on \mathbb{R}^2 ? Justify your answer.

Solution: Observe that, for $y \neq 0$,

$$|f(x,y)| = \left| x \sin\left(\frac{1}{y}\right) \right|$$
$$= \left| x \right| \left| \sin\left(\frac{1}{y}\right) \right|$$
$$\leqslant \left| x \right|$$
$$\leqslant \sqrt{x^2 + y^2}.$$

It then follows that, for $y \neq 0$,

$$0 \leqslant |f(x,y)| \leqslant ||(x,y)||.$$

Consequently, by the Squeeze Theorem,

$$\lim_{\|(x,y)\| \to 0} |f(x,y)| = 0.$$

This suggests that we define L = 0. If this is the case,

$$\lim_{\|(x,y)\|\to 0} |f(x,y) - f(0,0)| = 0,$$

which shows that f is continuous at (0,0) if L = 0.

Next, assume now that L = 0 in the definition of f. Then, for any $a \neq 0$, f fails for be continuous at (a, 0). To see why this is case, note that for any $y \neq 0$

$$f(a,y) = a \sin\left(\frac{1}{y}\right)$$

and the limit of $\sin\left(\frac{1}{y}\right)$ as $y \to 0$ does not exist. \Box

Math 67. Rumbos

9. Define the scalar field $f : \mathbb{R}^n \to \mathbb{R}$ by $f(v) = \frac{1}{2} ||v||^2$ for all $v \in \mathbb{R}^n$. Show that f is differentiable on \mathbb{R}^n and compute the linear map $Df(u) : \mathbb{R}^n \to \mathbb{R}$ for all $u \in \mathbb{R}^n$. What is the gradient of f at u for all $x \in \mathbb{R}^n$?

Solution: Let u and w be any vector in \mathbb{R}^n and consider

$$f(u+w) = \frac{1}{2} ||u+w||^2$$

= $\frac{1}{2}(u+w) \cdot (u+w)$
= $\frac{1}{2}u \cdot u + u \cdot w + \frac{1}{2}w \cdot w$
= $\frac{1}{2} ||u||^2 + u \cdot w + \frac{1}{2} ||w||^2.$

Thus,

$$f(u+w) - f(u) - u \cdot w = \frac{1}{2} ||w||^2.$$

Consequently,

$$\frac{|f(u+w) - f(u) - u \cdot w|}{\|w\|} = \frac{1}{2} \|w\|,$$

for $w \in \mathbb{R}^n$ with $||w|| \neq 0$, from which we get that

$$\lim_{\|w\|\to 0} \frac{|f(u+w) - f(u) - u \cdot w|}{\|w\|} = 0,$$

and therefore f is differentiable at u with derivative map Df(u) given by

y $Df(u)w = u \cdot w$ for all $w \in \mathbb{R}^n$.

Hence, $\nabla f(u) = u$ for all $u \in \mathbb{R}^n$.

- 10. Let $g: [0, \infty) \to \mathbb{R}$ be a differentiable, real-valued function of a single variable, and let f(x, y) = g(r) where $r = \sqrt{x^2 + y^2}$.
 - (a) Compute $\frac{\partial r}{\partial x}$ in terms of x and r, and $\frac{\partial r}{\partial y}$ in terms of y and r.

$$\frac{\partial(r^2)}{\partial x} = 2x.$$

Applying the chain rule on the left-hand side we get

$$2r\frac{\partial r}{\partial x} = 2x,$$

 $\frac{\partial r}{\partial x} = \frac{x}{r}.$

which leads to

Similarly, $\frac{\partial r}{\partial y} = \frac{y}{r}$.

(b) Compute ∇f in terms of g'(r), r and the vector $\mathbf{r} = x\hat{i} + y\hat{j}$.

 ∇

Solution: Take the partial derivative of f(x, y) = g(r) on both sides with respect to x and apply the Chain Rule to obtain

$$\frac{\partial f}{\partial x} = g'(r)\frac{\partial r}{\partial x} = g'(r)\frac{x}{r}.$$

Similarly, $\frac{\partial f}{\partial y} = g'(r)\frac{y}{r}$. It then follows that

$$f = \frac{\partial f}{\partial x}\hat{i} + \frac{\partial f}{\partial y}\hat{j}$$

$$= g'(r)\frac{x}{r}\hat{i} + g'(r)\frac{y}{r}\hat{j}$$

$$= \frac{g'(r)}{r}(x\hat{i} + y\hat{j})$$

$$= \frac{g'(r)}{r}\mathbf{r}.$$

11. Let $f: U \to \mathbb{R}$ denote a scalar field defined on an open subset U of \mathbb{R}^n , and let \widehat{u} be a unit vector in \mathbb{R}^n . If the limit

$$\lim_{t\to 0}\frac{f(v+t\widehat{u})-f(v)}{t}$$

exists, we call it the directional derivative of f at v in the direction of the unit vector \hat{u} . We denote it by $D_{\hat{u}}f(v)$.

Math 67. Rumbos

(a) Show that if f is differentiable at $v \in U$, then, for any unit vector \hat{u} in \mathbb{R}^n , the directional derivative of f in the direction of \hat{u} at v exists, and

$$D_{\widehat{u}}f(v) = \nabla f(v) \cdot \widehat{u},$$

where $\nabla f(v)$ is the gradient of f at v.

Proof: Suppose that f is differentiable at $v \in U$. Then,

$$f(v+w) = f(v) + Df(v)w + E(w),$$

where

$$Df(v)w = \nabla f(v) \cdot w,$$

and

$$\lim_{\|w\| \to 0} \frac{|E(w)|}{\|w\|} = 0$$

Thus, for any $t \in \mathbb{R}$,

$$f(v + t\widehat{u}) = f(v) + t\nabla f(v) \cdot \widehat{u} + E(t\widehat{u}),$$

where

$$\lim_{|t|\to 0}\frac{|E(t\widehat{u})|}{|t|} = 0,$$

since $||t\hat{u}|| = |t|||\hat{u}|| = |t|$. We then have that, for $t \neq 0$,

$$\frac{f(v+t\widehat{u}) - f(v)}{t} - \nabla f(v) \cdot \widehat{u} = \frac{E(t\widehat{u})}{t},$$

and consequently

$$\left|\frac{f(v+t\widehat{u})-f(v)}{t}-\nabla f(v)\cdot\widehat{u}\right| = \frac{|E(t\widehat{u})|}{|t|},$$

from which we get that

$$\lim_{t \to 0} \left| \frac{f(v + t\hat{u}) - f(v)}{t} - \nabla f(v) \cdot \hat{u} \right| = 0.$$

(b) Suppose that $f: U \to \mathbb{R}$ is differentiable at $v \in U$. Prove that if $D_{\widehat{u}}f(v) = 0$ for every unit vector \widehat{u} in \mathbb{R}^n , then $\nabla f(v)$ must be the zero vector.

Proof: Suppose, by way of contradiction, that $\nabla f(v) \neq \mathbf{0}$, and put

$$\widehat{u} = \frac{1}{\|\nabla f(v)\|} \nabla f(v).$$

Then, \hat{u} is a unit vector, and therefore, by the assumption,

$$D_{\widehat{u}}f(v) = 0,$$

or

$$\nabla f(v) \cdot \hat{u} = 0$$

But this implies that

$$\nabla f(v) \cdot \frac{1}{\|\nabla f(v)\|} \nabla f(v) = 0,$$

where

$$\nabla f(v) \cdot \frac{1}{\|\nabla f(v)\|} \nabla f(v) = \frac{1}{\|\nabla f(v)\|} \nabla f(v) \cdot \nabla f(v)$$
$$= \frac{1}{\|\nabla f(v)\|} \|\nabla f(v)\|^2$$
$$= \|\nabla f(v)\|.$$

It then follows that $\|\nabla f(v)\| = 0$, which contradicts the assumption that $\nabla f(v) \neq \mathbf{0}$. Therefore, $\nabla f(v)$ must be the zero vector.

(c) Suppose that $f: U \to \mathbb{R}$ is differentiable at $v \in U$. Use the Cauchy– Schwarz inequality to show that the largest value of $D_{\hat{u}}f(v)$ is $\|\nabla f(v)\|$ and it occurs when \hat{u} is in the direction of $\nabla f(v)$.

Proof. If f is differentiable at x, then $D_{\hat{u}}f(x) = \nabla f(x) \cdot \hat{u}$, as was shown in part (a). Thus, by the Cauchy–Schwarz inequality,

$$|D_{\widehat{u}}f(x)| \leq \|\nabla f(x)\| \|\widehat{u}\| = \|\nabla f(x)\|,$$

since \hat{u} is a unit vector. Hence,

$$-\|\nabla f(x)\| \leqslant D_{\widehat{u}}f(x) \leqslant \|\nabla f(x)\|$$

for any unit vector \hat{u} , and so the largest value that $D_{\hat{u}}f(x)$ can have is $\|\nabla f(x)\|$.

If
$$\nabla f(x) \neq \mathbf{0}$$
, then $\widehat{u} = \frac{1}{\|\nabla f(x)\|} \nabla f(x)$ is a unit vector, and
 $D_{\widehat{u}}f(x) = \nabla f(x) \cdot \widehat{u}$
 $= \nabla f(x) \cdot \frac{1}{\|\nabla f(x)\|} \nabla f(x)$
 $= \frac{1}{\|\nabla f(x)\|} \nabla f(x) \cdot \nabla f(x)$
 $= \frac{1}{\|\nabla f(x)\|} \|\nabla f(x)\|^2$
 $= \|\nabla f(x)\|.$

Thus, $D_{\hat{u}}f(x)$ attains its largest value when \hat{u} is in the direction of $\nabla f(x)$.