Review Problems for Exam 2

1. Let U denote an open and convex subset of \mathbb{R}^{n}. Suppose that $f: U \rightarrow \mathbb{R}$ is differentiable at every $x \in U$. Fix x and y in U, and define $g:[0,1] \rightarrow \mathbb{R}$ by

$$
g(t)=f(x+t(y-x)) \text { for } 0 \leqslant t \leqslant 1
$$

(a) Explain why the function g is well defined.
(b) Show that g is differentiable on $(0,1)$ and that

$$
g^{\prime}(t)=\nabla f(x+t(y-x)) \cdot(y-x) \quad \text { for } 0<t<1
$$

(c) Use the Mean Value Theorem for derivatives to show that there exists a point z is the line segment connecting x to y such that

$$
f(y)-f(x)=D_{\widehat{u}} f(z)\|y-x\|
$$

where \widehat{u} is the unit vector in the direction of the vector $y-x$; that is, $\widehat{u}=\frac{1}{\|y-x\|}(y-x)$.
(d) Prove that if U is an open and convex subset of \mathbb{R}^{n}, and $f: U \rightarrow \mathbb{R}$ is differentiable on U with $\nabla f(v)=\mathbf{0}$ for all $v \in U$, then f must be a constant function.
2. Let U be an open subset of \mathbb{R}^{n} and I be an open interval. Suppose that $f: U \rightarrow$ \mathbb{R} is a differentiable scalar field and $\sigma: I \rightarrow \mathbb{R}^{n}$ be a differentiable path whose image lies in U. Suppose also that $\sigma^{\prime}(t)$ is never the zero vector. Show that if f has a local maximum or a local minimum at some point on the path, then ∇f is perpendicular to the path at that point.

Suggestion: Consider the real valued function of a single variable $g(t)=f(\sigma(t))$ for all $t \in I$.
3. Let C denote the boundary of the oriented triangle, $T=[(0,0)(1,0)(1,2)]$, in \mathbb{R}^{2}. Evaluate the line integral $\int_{C} \frac{x^{2}}{2} \mathrm{~d} y-\frac{y^{2}}{2} \mathrm{~d} x$, by applying the Fundamental Theorem of Calculus.
4. Let $F(x, y)=2 x \widehat{i}-y \widehat{j}$ and R be the square in the $x y$-plane with vertices $(0,0),(2,-1),(3,1)$ and $(1,2)$. Evaluate $\oint_{\partial R} F \cdot n \mathrm{~d} s$.
5. Evaluate the line integral $\int_{\partial R}\left(x^{4}+y\right) \mathrm{d} x+\left(2 x-y^{4}\right) \quad \mathrm{d} y$, where R is the rectangular region

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \mid-1 \leqslant x \leqslant 3,-2 \leqslant y \leqslant 1\right\},
$$

and ∂R is traversed in the counterclockwise sense.
6. Integrate the function given by $f(x, y)=x y^{2}$ over the region, R, defined by:

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \mid x \geqslant 0,0 \leqslant y \leqslant 4-x^{2}\right\} .
$$

7. Let R denote the region in the plane defined by inside of the ellipse

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, \tag{1}
\end{equation*}
$$

for $a>0$ and $b>0$.
(a) Evaluate the line integral $\oint_{\partial R} x \mathrm{~d} y-y \mathrm{~d} x$, where ∂R is the ellipse in (1) traversed in the positive sense.
(b) Use your result from part (a) and the Fundamental Theorem of Calculus to come up with a formula for computing the area of the region enclosed by the ellipse in (1).
8. Evaluate the double integral $\int_{R} e^{-x^{2}} \mathrm{~d} x \mathrm{~d} y$, where R is the region in the $x y-$ plane sketched in Figure 1.

Figure 1: Sketch of Region R in Problem 8

