Solutions to Review Problems for Exam 2

1. Let U denote an open and convex subset of \mathbb{R}^{n}. Suppose that $f: U \rightarrow \mathbb{R}$ is differentiable at every $x \in U$. Fix x and y in U, and define $g:[0,1] \rightarrow \mathbb{R}$ by

$$
g(t)=f(x+t(y-x)) \quad \text { for } \quad 0 \leqslant t \leqslant 1
$$

(a) Explain why the function g is well defined.

Answer: Since U is convex, for any $x, y \in U, x+t(y-x) \in U$ for all $t \in[0,1]$. Thus, $f(x+t(y-x))$ is defined for all $t \in[0,1]$, because f is defined on U.
(b) Show that g is differentiable on $(0,1)$ and that

$$
g^{\prime}(t)=\nabla f(x+t(y-x)) \cdot(y-x) \quad \text { for } \quad 0<t<1
$$

Solution: It follows from the Chain Rule that the composition $g=f \circ \sigma:[0,1] \rightarrow \mathbb{R}$, where $\sigma:[0,1] \rightarrow \mathbb{R}^{n}$ is the path given by

$$
\sigma(t)=x+t(y-x), \quad \text { for all } t \in[0,1]
$$

is differentiable and

$$
g^{\prime}(t)=\nabla f(\sigma(t)) \cdot \sigma^{\prime}(t), \quad \text { for all } t \in(0,1)
$$

where

$$
\sigma(t)=y-x, \quad \text { for all } t
$$

Consequently, we get that

$$
g^{\prime}(t)=\nabla f(x+t(y-x)) \cdot(y-x) \quad \text { for } 0<t<1 .
$$

(c) Use the Mean Value Theorem for derivatives to show that there exists a point z is the line segment connecting x to y such that

$$
\begin{equation*}
f(y)-f(x)=D_{\widehat{u}} f(z)\|y-x\| \tag{1}
\end{equation*}
$$

where \widehat{u} is the unit vector in the direction of the vector $y-x$; that is, $\widehat{u}=\frac{1}{\|y-x\|}(y-x)$.

Solution: The mean value theorem implies that there exists $\tau \in$ $(0,1)$ such that

$$
g(1)-g(0)=g^{\prime}(\tau)(1-0)
$$

so that

$$
\begin{equation*}
f(y)-f(x)=\nabla f(x+\tau(y-x)) \cdot(y-x) \tag{2}
\end{equation*}
$$

Put $z=x+\tau(y-x)$ and $\widehat{u}=\frac{1}{\|y-x\|}(y-x)$. We can then write (2) as

$$
\begin{aligned}
f(y)-f(x) & =\left(\nabla f(z) \cdot \frac{1}{\|y-x\|}(y-x)\right)\|y-x\| \\
& =(\nabla f(z) \cdot \widehat{u})\|y-x\|
\end{aligned}
$$

which yields (1).
(d) Prove that if U is an open and convex subset of \mathbb{R}^{n}, and $f: U \rightarrow \mathbb{R}$ is differentiable on U with $\nabla f(v)=\mathbf{0}$ for all $v \in U$, then f must be a constant function.

Solution: Fix $x_{o} \in U$. Then, for any $x \in U$, the formula in (1) yields

$$
\begin{equation*}
f(x)-f\left(x_{o}\right)=D_{\widehat{u}} f(z)\left\|x-x_{o}\right\|, \tag{3}
\end{equation*}
$$

where $D_{\widehat{u}} f(z)=\nabla f(z) \cdot \widehat{u}=0$ by the assumption. Hence, it follows from (3) that

$$
f(x)=f\left(x_{o}\right), \quad \text { for all } x \in U \text {; }
$$

in other words, f is constant in U.
2. Let U be an open subset of \mathbb{R}^{n} and I be an open interval. Suppose that $f: U \rightarrow$ \mathbb{R} is a differentiable scalar field and $\sigma: I \rightarrow \mathbb{R}^{n}$ be a differentiable path whose image lies in U. Suppose also that $\sigma^{\prime}(t)$ is never the zero vector. Show that if f has a local maximum or a local minimum at some point on the path, then ∇f is perpendicular to the path at that point.

Suggestion: Consider the real valued function of a single variable $g(t)=f(\sigma(t))$ for all $t \in I$.

Solution: If f has a local maximum or minimum at $\sigma\left(t_{o}\right)$, then $g^{\prime}\left(t_{o}\right)=0$, where, by the Chain rule,

$$
g^{\prime}(t)=\nabla f(\sigma(t)) \cdot \sigma^{\prime}(t) \quad \text { for all } t \in I
$$

It then follows that

$$
\nabla f\left(\sigma\left(t_{o}\right)\right) \cdot \sigma^{\prime}\left(t_{o}\right)=0
$$

and, consequently, $\nabla f\left(\sigma\left(t_{o}\right)\right.$ is perpendicular to the tangent to the path at $\sigma\left(t_{o}\right)$.
3. Let C denote the boundary of the oriented triangle, $T=[(0,0)(1,0)(1,2)]$, in \mathbb{R}^{2}. Evaluate the line integral $\int_{C} \frac{x^{2}}{2} \mathrm{~d} y-\frac{y^{2}}{2} \mathrm{~d} x$, by applying the Fundamental Theorem of Calculus.

Solution: Apply the Fundamental Theorem of Calculus to the 1form

$$
\omega=-\frac{y^{2}}{2} \mathrm{~d} x+\frac{x^{2}}{2} \mathrm{~d} y
$$

over the oriented triangle T; namely,

$$
\int_{\partial T} \omega=\int_{T} d \omega,
$$

where

$$
d \omega=(x+y) d x \wedge d y
$$

Thus, since T is positively oriented, it follows that

$$
\begin{aligned}
\int_{\partial T} \omega & =\iint_{T}(x+y) d x d y \\
& =\int_{0}^{1} \int_{0}^{2 x}(x+y) d y d x \\
& =\int_{0}^{1}\left[x y+\frac{y^{2}}{2}\right]_{0}^{2 x} d x \\
& =\int_{0}^{1} 4 x^{2} d x
\end{aligned}
$$

so that

$$
\int_{C} \frac{x^{2}}{2} \mathrm{~d} y-\frac{y^{2}}{2} \mathrm{~d} x=\frac{4}{3}
$$

4. Let $F(x, y)=2 x \widehat{i}-y \widehat{j}$ and R be the square in the $x y$-plane with vertices $(0,0),(2,-1),(3,1)$ and $(1,2)$. Evaluate $\oint_{\partial R} F \cdot n \mathrm{~d} s$.

Figure 1: Sketch of Region R in Problem 4
Solution: Apply the Fundamental Theorem of Calculus,

$$
\oint_{\partial R} F \cdot \widehat{n} d s=\int_{R} d \omega
$$

where

$$
\omega=P d y-Q d x=2 x d y-(-y) d x=y d x+2 x d y
$$

so that

$$
d \omega=d y \wedge d x+2 d x \wedge d y=d x \wedge d y
$$

we obtain that

$$
\begin{aligned}
\oint_{\partial R} F \cdot d \mathbf{n} & =\int_{R} d x \wedge d y \\
& =\iint_{R} d x d y \\
& =\operatorname{area}(R)
\end{aligned}
$$

To find the area of the region R, shown in Figure 1, observe that R is a parallelogram determined by the vectors $v=2 \widehat{i}-\widehat{j}$ and $w=\widehat{i}+2 \widehat{j}$. Thus,

$$
\operatorname{area}(R)=\|v \times w\|=5 .
$$

It the follows that

$$
\oint_{\partial R} F \cdot n \mathrm{~d} s=\iint_{R} \mathrm{~d} x \mathrm{~d} y=5
$$

5. Evaluate the line integral $\int_{\partial R}\left(x^{4}+y\right) \quad \mathrm{d} x+\left(2 x-y^{4}\right) \quad \mathrm{d} y$, where R is the rectangular region

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \mid-1 \leqslant x \leqslant 3,-2 \leqslant y \leqslant 1\right\}
$$

and ∂R is traversed in the counterclockwise sense.
Solution: Apply the Fundamental Theorem of Calculus to get

$$
\begin{aligned}
\int_{\partial R}\left(x^{4}+y\right) d x+\left(2 x-y^{4}\right) d y & =\int_{R} d\left(x^{4}+y\right) \wedge d x+d\left(2 x-y^{4}\right) \wedge d y \\
& =\int_{R} d y \wedge d x+2 d x \wedge d y \\
& =\int_{R} d x \wedge d y \\
& =\operatorname{area}(R) \\
& =12
\end{aligned}
$$

6. Integrate the function given by $f(x, y)=x y^{2}$ over the region, R, defined by:

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \mid x \geqslant 0,0 \leqslant y \leqslant 4-x^{2}\right\} .
$$

Solution: The region, R, is sketched in Figure 2. We evaluate the

Figure 2: Sketch of Region R in Problem 8
double integral, $\iint_{R} x y^{2} \mathrm{~d} x \mathrm{~d} y$, as an iterated integral

$$
\begin{aligned}
\iint_{R} x y^{2} \mathrm{~d} x \mathrm{~d} y & =\int_{0}^{2} \int_{0}^{4-x^{2}} x y^{2} \mathrm{~d} y \mathrm{~d} x \\
& =\int_{0}^{2} \int_{0}^{4-x^{2}} x y^{2} \mathrm{~d} y \mathrm{~d} x \\
& =\left.\int_{0}^{2} \frac{x y^{3}}{3}\right|_{0} ^{4-x^{2}} \mathrm{~d} x \\
& =\frac{1}{3} \int_{0}^{2} x\left(4-x^{2}\right)^{3} \mathrm{~d} x
\end{aligned}
$$

To evaluate the last integral, make the change of variables: $u=4-x^{2}$. We then have that $\mathrm{d} u=-2 x \mathrm{~d} x$ and

$$
\begin{aligned}
\iint_{R} x y^{2} \mathrm{~d} x \mathrm{~d} y & =\int_{0}^{2} \int_{0}^{4-x^{2}} x y^{2} \mathrm{~d} y \mathrm{~d} x \\
& =-\frac{1}{6} \int_{4}^{0} u^{3} \mathrm{~d} u \\
& =\frac{1}{6} \int_{0}^{4} u^{3} \mathrm{~d} u
\end{aligned}
$$

Thus,

$$
\iint_{R} x y^{2} \mathrm{~d} x \mathrm{~d} y=\frac{4^{4}}{24}=\frac{32}{3} .
$$

7. Let R denote the region in the plane defined by inside of the ellipse

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, \tag{4}
\end{equation*}
$$

for $a>0$ and $b>0$.
(a) Evaluate the line integral $\oint_{\partial R} x \mathrm{~d} y-y \mathrm{~d} x$, where ∂R is the ellipse in (4) traversed in the positive sense.

Solution: A sketch of the ellipse is shown in Figure 3 for the case $a<b$.

Figure 3: Sketch of ellipse
A parametrization of the ellipse is given by

$$
x=a \cos t, \quad y=b \sin t, \quad \text { for } \quad 0 \leqslant t \leqslant 2 \pi .
$$

We then have that $\mathrm{d} x=-a \sin t \mathrm{~d} t$ and $\mathrm{d} y=b \cos t \mathrm{~d} t$. Therefore

$$
\begin{aligned}
\oint_{\partial R} x \mathrm{~d} y-y \mathrm{~d} x & =\int_{0}^{2 \pi}[a \cos t \cdot b \cos t-b \sin t \cdot(-a \cos t)] \mathrm{d} t \\
& =\int_{0}^{2 \pi}\left[a b \cos ^{2} t+a b \sin ^{2} t\right] \mathrm{d} t \\
& =a b \int_{0}^{2 \pi}\left(\cos ^{2} t+a b \sin ^{2} t\right) \mathrm{d} t \\
& =a b \int_{0}^{2 \pi} \mathrm{~d} t \\
& =2 \pi a b
\end{aligned}
$$

(b) Use your result from part (a) and the Fundamental Theorem of Calculus to come up with a formula for computing the area of the region enclosed by the ellipse in (4).

Solution: Let $F(x, y)=x \widehat{i}+y \widehat{j}$. Then,

$$
\oint_{\partial R} x \mathrm{~d} y-y \mathrm{~d} x=\oint_{\partial R} F \cdot n \mathrm{~d} s .
$$

Thus, by Green's Theorem in divergence form,

$$
\oint_{\partial R} x \mathrm{~d} y-y \mathrm{~d} x=\iint_{R} \operatorname{div} F \mathrm{~d} x \mathrm{~d} y
$$

where

$$
\operatorname{div} F(x, y)=\frac{\partial}{\partial x}(x)+\frac{\partial}{\partial y}(y)=2
$$

Consequently,

$$
\oint_{\partial R} x \mathrm{~d} y-y \mathrm{~d} x=2 \iint_{R} \mathrm{~d} x \mathrm{~d} y=2 \operatorname{area}(R)
$$

It then follows that

$$
\operatorname{area}(R)=\frac{1}{2} \oint_{\partial R} x \mathrm{~d} y-y \mathrm{~d} x
$$

Thus,

$$
\operatorname{area}(R)=\pi a b
$$

by the result in part (a).
8. Evaluate the double integral $\int_{R} e^{-x^{2}} \mathrm{~d} x \mathrm{~d} y$, where R is the region in the $x y-$ plane sketched in Figure 4.

Figure 4: Sketch of Region R in Problem 8

Solution: Compute

$$
\begin{aligned}
\iint_{R} e^{-x^{2}} \mathrm{~d} x \mathrm{~d} y & =\int_{0}^{2} \int_{0}^{2 x} e^{-x^{2}} \mathrm{~d} y \mathrm{~d} x \\
& =\int_{0}^{2} 2 x e^{-x^{2}} \mathrm{~d} x \\
& =\left[-e^{-x^{2}}\right]_{0}^{2} \\
& =1-e^{-4}
\end{aligned}
$$

