Review Problems for Final Exam

- 1. In this problem, u and v denote vectors in \mathbb{R}^n .
 - (a) Use the triangle inequality to derive the inequality

 $| \|v\| - \|v\| | \leq \|v - u\| \text{ for all } u, v \in \mathbb{R}^n.$

- (b) Use the inequality derived in the previous part to show that the function $f: \mathbb{R}^n \to \mathbb{R}$ given by f(v) = ||v||, for all $v \in \mathbb{R}^n$, is continuous in \mathbb{R}^n .
- (c) Prove that the function $g: \mathbb{R}^n \to \mathbb{R}$ given by $g(v) = \sin(||v||)$, for all $v \in \mathbb{R}^n$, is continuous.
- 2. Define the scalar field $f \colon \mathbb{R}^n \to \mathbb{R}$ by $f(v) = ||v||^2$ for all $v \in \mathbb{R}^n$.
 - (a) Show that f is differentiable in \mathbb{R}^n and compute the linear map

 $Df(u) \colon \mathbb{R}^n \to \mathbb{R} \quad \text{for all} \quad u \in \mathbb{R}^n.$

What is the gradient of f at u for all $u \in \mathbb{R}^n$?

- (b) Let \hat{v} denote a unit vector in \mathbb{R}^n . For a fixed vector u in \mathbb{R}^n , define $g: \mathbb{R} \to \mathbb{R}$ by $g(t) = ||u t\hat{v}||^2$, for all $t \in \mathbb{R}$. Show that g is differentiable and compute g'(t) for all $t \in \mathbb{R}$.
- (c) Let \hat{v} be as in the previous part. For any $u \in \mathbb{R}^n$, give the point on the line spanned by \hat{v} which is the closest to u. Justify your answer.
- 3. Let I denote an open interval which contains the real number a. Assume that $\sigma: I \to \mathbb{R}^n$ is a C^1 parametrization of a curve C in \mathbb{R}^n . Define $s: I \to \mathbb{R}$ as follows:

$$s(t) =$$
arlength along the curve C from $\sigma(a)$ to $\sigma(t)$, (1)

for all $t \in I$.

- (a) Give a formula, in terms of an integral, for computing s(t) for all $t \in I$.
- (b) Prove that s is differentiable on I and compute s'(t) for all $t \in I$. Deduce that s is strictly increasing with increasing t.
- (c) Let $\ell =$ arclength of C, and suppose that $\gamma \colon [0, \ell] \to \mathbb{R}^n$ is a parametrization of C with the arclength parameter s defined in (1); so that,

$$C = \{ \gamma(s) \mid 0 \leqslant s \leqslant \ell \}.$$

Use the fact that $\sigma(t) = \gamma(s(t))$, for all $t \in [a, b]$, to show $\gamma'(s)$ is a unit vector that is tangent to the curve C at the point $\gamma(s)$.

Math 67. Rumbos

4. Let I denote an open interval of real numbers and $f: I \to \mathbb{R}$ be a differentiable function. Let $a, b \in I$ be such that a < b, and define C to the section of the graph of y = f(x) from the point (a, f(a)) to the point (b, f(b)); that is,

$$C = \{(x, y) \in \mathbb{R}^2 \mid y = f(x) \text{ and } a \leqslant x \leqslant b\}$$

- (a) By providing an appropriate parametrization of C, compute the arclenth of C, $\ell(C)$.
- (b) Let $f(x) = 5 2x^{3/2}$, for $x \ge 0$. Compute the exact arcength of y = f(x) over the interval [0, 11].
- 5. Let $\Phi \colon \mathbb{R}^2 \to \mathbb{R}^2$ denote the map from the *uv*-plane to the *xy*-plane given by

$$\Phi\begin{pmatrix}u\\v\end{pmatrix} = \begin{pmatrix}2u\\v^2\end{pmatrix} \quad \text{for all} \quad \begin{pmatrix}u\\v\end{pmatrix} \in \mathbb{R}^2,$$

and let T be the oriented triangle [(0,0), (1,0), (1,1)] in the *uv*-plane.

- (a) Show that Φ is differentiable and give a formula for its derivative, $D\Phi(u, v)$, at every point $\begin{pmatrix} u \\ v \end{pmatrix}$ in \mathbb{R}^2 .
- (b) Give the image, R, of the triangle T under the map Φ , and sketch it in the xy-plane.
- (c) Evaluate the integral $\iint_R dxdy$, where R is the region in the xy-plane obtained in part (b).
- (d) Evaluate the integral $\iint_T |\det[D\Phi(u,v)]| \, dudv$, where $\det[D\Phi(u,v)]$ denotes the determinant of the Jcobian matrix of Φ obtained in part (a). Compare the result obtained here with that obtained in part (c).

6. Consider the iterated integral
$$\int_0^1 \int_{x^2}^1 x \sqrt{1-y^2} \, dy dx$$
.

- (a) Identify the region of integration, R, for this integral and sketch it.
- (b) Change the order of integration in the iterated integral and evaluate the double integral $\int_R x\sqrt{1-y^2} \, dx dy$.
- 7. Let $f: \mathbb{R} \to \mathbb{R}$ denote a twice–differentiable real valued function and define

$$u(x,t) = f(x-ct)$$
 for all $(x,t) \in \mathbb{R}^2$,

where c is a real constant. Verify that $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$.

8. What is the region R over which you integrate when evaluating the iterated integral

$$\int_{1}^{2} \int_{1}^{x} \frac{x}{\sqrt{x^{2} + y^{2}}} \, \mathrm{d}y \, \mathrm{d}x?$$

Rewrite this as an iterated integral first with respect to x, then with respect to y. Evaluate this integral. Which order of integration is easier?

9. Let $f: \mathbb{R} \to \mathbb{R}$ denote a twice–differentiable real valued function and define

$$u(x,y) = f(r)$$
 where $r = \sqrt{x^2 + y^2}$ for all $(x,y) \in \mathbb{R}^2$.

- (a) Define the vector field $F(x,y) = \nabla u(x,y)$. Express F in terms of f' and r.
- (b) Recall that the divergence of a vector field $F = P \hat{i} + Q \hat{j}$ is the scalar field given by $\operatorname{div} F = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y}$. Express the divergence of the gradient of u, in terms of f', f'' and r. The expression $\operatorname{div}(\nabla u)$ is called the Laplacian of u, and is denoted by Δu or $\nabla^2 u$.
- 10. Let f(x,y) = 4x 7y for all $(x,y) \in \mathbb{R}^2$, and $g(x,y) = 2x^2 + y^2$.
 - (a) Sketch the graph of the set $C = g^{-1}(1) = \{(x, y) \in \mathbb{R}^2 \mid g(x, y) = 1\}.$
 - (b) Show that at the points where f has an extremum on C, the gradient of f is parallel to the gradient of g.
 - (c) Find the largest and the smallest value of f on C.
- 11. Let ω be the differential 1-form in \mathbb{R}^3 given by $\omega = x \, dx + y \, dy + z \, dz$.
 - (a) Compute the differential, $d\omega$, of ω .
 - (b) If possible, find a differential 0-form, f, such that $\omega = df$.
 - (c) Let C be parametrized by a C^1 connecting $P_o(1, -1, -2)$ to $P_1(-1, 1, 2)$. Compute the line integral $\int_{-\infty}^{\infty} \omega$.
 - (d) Let C denote any simple closed curve in \mathbb{R}^3 . Evaluate the line integral $\int_C \omega$.

- 12. Let f denote a differential 0-form in \mathbb{R}^3 and ω a differential 1-form in \mathbb{R}^3 .
 - (a) Verify that d(df) = 0.
 - (b) Verify that $d(d\omega) = 0$.
- 13. Let f and g denote differential 0-forms in \mathbb{R}^3 , and ω and η a differential 1-forms in \mathbb{R}^3 . Derive the following identities
 - (a) d(fg) = g df + f dg.
 - (b) $d(f\omega) = df \wedge \omega + f d\omega$.
 - (c) $d(\omega \wedge \eta) = d\omega \wedge \eta \omega \wedge d\eta$.
- 14. Let R denote the square, $R = \{(x, y) \in \mathbb{R}^2 \mid 0 \leq x \leq 1, 0 \leq y \leq 1\}$, and ∂R denote the boundary of R oriented in the counterclockwise sense. Evaluate the line integral

$$\int_{\partial R} (y^2 + x^3) \, dx + x^4 \, dy.$$