Solutions to Review Problems for Final Exam

1. In this problem, u and v denote vectors in \mathbb{R}^{n}.
(a) Use the triangle inequality to derive the inequality

$$
\begin{equation*}
|\|v\|-\|u\|| \leqslant\|v-u\| \quad \text { for all } u, v \in \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

Solution: Write

$$
\|u\|=\|(u-v)+v\|
$$

and applying the triangle inequality to obtain

$$
\|u\| \leqslant\|u-v\|+\|v\|
$$

from which we get that

$$
\begin{equation*}
\|u\|-\|v\| \leqslant\|v-u\| \tag{2}
\end{equation*}
$$

Interchanging the roles for u and v in (2) we obtain

$$
\|v\|-\|u\| \leqslant\|u-v\|
$$

from which we get

$$
\begin{equation*}
\|v\|-\|u\| \leqslant\|v-u\| \tag{3}
\end{equation*}
$$

Combining (2) and (3) yields

$$
-\|v-u\| \leqslant\|v\|-\|u\| \leqslant\|v-u\|
$$

which is (1).
(b) Use the inequality derived in the previous part to show that the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $f(v)=\|v\|$, for all $v \in \mathbb{R}^{n}$, is continuous in \mathbb{R}^{n}.
Solution: Fix $u \in \mathbb{R}^{n}$ and apply the inequality in (1) to any $v \in \mathbb{R}^{n}$ to obtain that

$$
\mid\|v\|-\|u\|\|\leqslant\| v-u \|
$$

or

$$
\begin{equation*}
|f(v)-f(u)| \leqslant\|v-u\| \tag{4}
\end{equation*}
$$

Next, apply the Squeeze Lemma to obtain from (4) that

$$
\lim _{\|v-u\| \rightarrow 0}|f(v)-f(u)|=0
$$

which shows that f is continuous at u for any $u \in \mathbb{R}^{n}$.
(c) Prove that the function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $g(v)=\sin (\|v\|)$, for all $v \in \mathbb{R}^{n}$, is continuous.
Solution: Observe that $g=\sin \circ f$, where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is as defined in part (b). Thus, g is the composition of two continuous functions, and is, therefore, continuous.
2. Define the scalar field $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $f(v)=\|v\|^{2}$ for all $v \in \mathbb{R}^{n}$.
(a) Show that f is differentiable in \mathbb{R}^{n} and compute the linear map

$$
D f(u): \mathbb{R}^{n} \rightarrow \mathbb{R} \quad \text { for all } u \in \mathbb{R}^{n}
$$

What is the gradient of f at u for all $u \in \mathbb{R}^{n}$?
Solution: Let $u \in \mathbb{R}^{n}$ and compute

$$
\begin{aligned}
f(u+w) & =\|u+w\|^{2} \\
& =(u+w) \cdot(u+w) \\
& =u \cdot u+u \cdot w+w \cdot u+w \cdot w \\
& =\|u\|^{2}+2 u \cdot w+\|w\|^{2}
\end{aligned}
$$

for $w \in \mathbb{R}^{n}$, where we have used the symmetry of the dot product and the fact that $\|v\|^{2}=v \cdot v$ for all $v \in \mathbb{R}^{n}$. We therefore have that

$$
\begin{equation*}
f(u+w)=f(u)+2 u \cdot w+\|w\|^{2}, \quad \text { for all } u \in \mathbb{R}^{n} \text { and } w \in \mathbb{R}^{n} \tag{5}
\end{equation*}
$$

Writing

$$
\begin{equation*}
D f(u) w=2 u \cdot w, \quad \text { for all } u \in \mathbb{R}^{n} \text { and } w \in \mathbb{R}^{n} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{u}(w)=\|w\|^{2}, \quad \text { for all } u \in \mathbb{R}^{n} \text { and } w \in \mathbb{R}^{n} \tag{7}
\end{equation*}
$$

we see that (5) can be rewritten as

$$
\begin{equation*}
f(u+w)=f(u)+D f(u) w+E_{u}(w), \quad \text { for all } u \in \mathbb{R}^{n} \text { and } w \in \mathbb{R}^{n} \tag{8}
\end{equation*}
$$

where, according to (6), Df(u): $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defines a linear transformation, and, by virtue of (7),

$$
\frac{\left|E_{u}(w)\right|}{\|w\|}=\|w\|, \quad \text { for } w \neq 0
$$

from which we get that

$$
\lim _{\|w\| \rightarrow 0} \frac{\left|E_{u}(w)\right|}{\|w\|}=0
$$

Consequently, in view of (8), we conclude that f is differentiable at every $u \in \mathbb{R}^{n}$, derivative at u given by (6).
Since $D f(u) w=\nabla f(u) \cdot w$, for all u and w in \mathbb{R}^{n}, by comparing with (6), we see that

$$
\nabla f(u)=2 u, \quad \text { for all } u \in \mathbb{R}^{n}
$$

Alternate Solution: Alternatively, for $u=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, we have that

$$
f(u)=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}
$$

so that

$$
\frac{\partial f}{\partial x_{j}}(u)=2 x_{j}, \quad \text { for } j=1,2, \ldots, n
$$

Thus, all the partial derivatives of f are continuous on \mathbb{R}^{n}; that is, f is a C^{1} function. Consequently, f is differentiable on \mathbb{R}^{n}. Furthermore,

$$
D f(u) w=\left(\begin{array}{llll}
2 x_{1} & 2 x_{2} & \cdots & 2 x_{n}
\end{array}\right) w, \quad \text { for all } w \in \mathbb{R}^{n},
$$

which can be written as

$$
\begin{equation*}
D f(u) w=2 u \cdot w, \quad \text { for all } w \in \mathbb{R}^{n} \tag{9}
\end{equation*}
$$

It then follows that $\nabla f(u)=2 u$ for all $u \in \mathbb{R}^{n}$.
(b) Let \widehat{v} denote a unit vector in \mathbb{R}^{n}. For a fixed vector u in \mathbb{R}^{n}, define $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(t)=\|u-t \widehat{v}\|^{2}$, for all $t \in \mathbb{R}$. Show that g is differentiable and compute $g^{\prime}(t)$ for all $t \in \mathbb{R}$.
Solution: Observe that $g=f \circ \sigma$, where $\sigma: \mathbb{R} \rightarrow \mathbb{R}^{n}$ is given by

$$
\begin{equation*}
\sigma(t)=u-t \widehat{v}, \quad \text { for all } t \in \mathbb{R} \tag{10}
\end{equation*}
$$

Thus, σ is a differentiable path with

$$
\begin{equation*}
\sigma^{\prime}(t)=-\widehat{v}, \quad \text { for all } t \in \mathbb{R} \tag{11}
\end{equation*}
$$

Thus, by the result from part (a), g is the composition of two differentiable functions. Consequently, by the Chain Rule, g is differentiable with

$$
\begin{equation*}
g^{\prime}(t)=D f(\sigma(t)) \sigma^{\prime}(t), \quad \text { for all } t \in \mathbb{R} \tag{12}
\end{equation*}
$$

Thus, using (9) and (11), we obtain from (12) that

$$
g^{\prime}(t)=2 \sigma(t) \cdot(-\widehat{v}), \quad \text { for all } t \in \mathbb{R}
$$

or

$$
\begin{equation*}
g^{\prime}(t)=-2 \sigma(t) \cdot \widehat{v}, \quad \text { for all } t \in \mathbb{R} \tag{13}
\end{equation*}
$$

Thus, using (10), we obtain from (13) that

$$
g^{\prime}(t)=-2(u-t \widehat{v}) \cdot \widehat{v}, \quad \text { for all } t \in \mathbb{R}
$$

which leads to

$$
\begin{equation*}
g^{\prime}(t)=2 t-2 u \cdot \widehat{v}, \quad \text { for all } t \in \mathbb{R}, \tag{14}
\end{equation*}
$$

since \widehat{v} is a unit vector in \mathbb{R}^{n}.
(c) Let \widehat{v} be as in the previous part. For any $u \in \mathbb{R}^{n}$, give the point on the line spanned by \widehat{v} which is the closest to u. Justify your answer.

Solution: It follows from (14) that $g^{\prime \prime}(t)=2>0$ for all $t \in \mathbb{R}$; so that g has a global minimum when $g^{\prime}(t)=0$. We then obtain from (14) that $g(t)$ is the smallest possible when

$$
t=u \cdot \widehat{v}
$$

Consequently, the point on the line spanned by \widehat{v} which is the closest to u is $(u \cdot \widehat{v}) \widehat{v}$, or the orthogonal projection of u onto the direction of \widehat{v}.
3. Let I denote an open interval which contains the real number a. Assume that $\sigma: I \rightarrow \mathbb{R}^{n}$ is a C^{1} parametrization of a curve C in \mathbb{R}^{n}. Define $s: I \rightarrow \mathbb{R}$ as follows:

$$
\begin{equation*}
s(t)=\text { arlength along the curve } C \text { from } \sigma(a) \text { to } \sigma(t) \tag{15}
\end{equation*}
$$

for all $t \in I$.
(a) Give a formula, in terms of an integral, for computing $s(t)$ for all $t \in I$.

Answer:

$$
\begin{equation*}
s(t)=\int_{a}^{t}\left\|\sigma^{\prime}(\tau)\right\| d \tau, \quad \text { for all } t \in I \tag{16}
\end{equation*}
$$

(b) Prove that s is differentiable on I and compute $s^{\prime}(t)$ for all $t \in I$. Deduce that s is strictly increasing with increasing t.

Solution: It follows from the assumption that σ is C^{1}, the Fundamental Theorem of Calculus, and (17), that s is differentiable and

$$
\begin{equation*}
s^{\prime}(t)=\left\|\sigma^{\prime}(t)\right\|, \quad \text { for all } t \in I \tag{17}
\end{equation*}
$$

Since we are also assuming that σ is a parametrization of a C^{1} curve, C, it follows that $\sigma^{\prime}(t) \neq \mathbf{0}$ for all $t \in I$. Consequently, we obtain from (17) that

$$
s^{\prime}(t)>0, \quad \text { for all } t \in I,
$$

which shows that $s(t)$ is strictly increasing with increasing t.
(c) Let $\ell=$ arclength of C, and suppose that $\gamma:[0, \ell] \rightarrow \mathbb{R}^{n}$ is a a parametrization of C with the arclength parameter s defined in (15); so that,

$$
C=\{\gamma(s) \mid 0 \leqslant s \leqslant \ell\} .
$$

Use the fact that $\sigma(t)=\gamma(s(t))$, for all $t \in[a, b]$, to show $\gamma^{\prime}(s)$ is a unit vector that is tangent to the curve C at the point $\gamma(s)$.

Solution: Note that $\sigma=\gamma \circ s$ is a composition of two differentiable functions, by the result of part (b). Consequently, by the Chain Rule,

$$
\sigma^{\prime}(t)=\frac{d s}{d t} \gamma^{\prime}(s), \quad \text { for } t \in(a, b)
$$

Thus, using (17),

$$
\sigma^{\prime}(t)=\left\|\sigma^{\prime}(t)\right\| \gamma^{\prime}(s), \quad \text { for } t \in(a, b)
$$

So, using the fact that $\left\|\sigma^{\prime}(t)\right\|>0$ for all $t \in(a, b)$,

$$
\gamma^{\prime}(s)=\frac{1}{\left\|\sigma^{\prime}(t)\right\|} \sigma^{\prime}(t), \quad \text { for } t \in(a, b)
$$

which shows that $\gamma^{\prime}(s)$ is a unit vector that is tangent to the curve C at the point $\gamma(s)$.
4. Let I denote an open interval of real numbers and $f: I \rightarrow \mathbb{R}$ be a differentiable function. Let $a, b \in I$ be such that $a<b$, and define C to the section of the graph of $y=f(x)$ from the point $(a, f(a))$ to the point $(b, f(b))$; that is,

$$
C=\left\{(x, y) \in \mathbb{R}^{2} \mid y=f(x) \text { and } a \leqslant x \leqslant b\right\}
$$

(a) By providing an appropriate parametrization of C, compute the arclenth of $C, \ell(C)$.

Solution: Parametrize C by $\sigma:[a, b] \rightarrow \mathbb{R}^{2}$ given by

$$
\sigma(t)=(t, f(t)), \quad \text { for } a \leqslant t \leqslant b
$$

Then,

$$
\sigma^{\prime}(t)=\left(1, f^{\prime}(t)\right), \quad \text { for } a \leqslant t \leqslant b ;
$$

so that

$$
\left\|\sigma^{\prime}(t)\right\|=\sqrt{1+\left[f^{\prime}(t)\right]^{2}}, \quad \text { for } a \leqslant t \leqslant b
$$

Therefore,

$$
\begin{equation*}
\ell(C)=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(t)\right]^{2}} d t . \tag{18}
\end{equation*}
$$

(b) Let $f(x)=5-2 x^{3 / 2}$, for $x \geqslant 0$. Compute the exact arcength of $y=f(x)$ over the interval $[0,11]$.

Solution: We use the formula in (18) with

$$
f^{\prime}(t)=-3 t^{1 / 2}, \quad \text { for } t>0
$$

Thus,

$$
\begin{aligned}
\ell(C) & =\int_{0}^{11} \sqrt{1+9 t} d t \\
& =\left[\frac{2}{27}(1+9 t)^{3 / 2}\right]_{0}^{11} \\
& =\frac{2}{27}(1000-1) \\
& =74
\end{aligned}
$$

5. Let $\Phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote the map from the $u v$-plane to the $x y$-plane given by

$$
\Phi\binom{u}{v}=\binom{2 u}{v^{2}} \quad \text { for all } \quad\binom{u}{v} \in \mathbb{R}^{2}
$$

and let T be the oriented triangle $[(0,0),(1,0),(1,1)]$ in the $u v$-plane.
(a) Show that Φ is differentiable and give a formula for its derivative, $D \Phi(u, v)$, at every point $\binom{u}{v}$ in \mathbb{R}^{2}.
Solution: Write

$$
\Phi\binom{u}{v}=\binom{f(u, v)}{g(u, v)} \quad \text { for all } \quad\binom{u}{v} \in \mathbb{R}^{2},
$$

where $f(u, v)=2 u$ and $g(u, v)=v^{2}$ for all $\binom{u}{v} \in \mathbb{R}^{2}$. Observe that the partial derivatives of f and g exist and are given by

$$
\begin{array}{ll}
\frac{\partial f}{\partial u}(u, v)=2, & \frac{\partial f}{\partial v}(u, v)=0 \\
\frac{\partial g}{\partial u}(u, v)=0, & \frac{\partial g}{\partial v}(u, v)=2 v
\end{array}
$$

Note that the partial derivatives of f and g are continuous. Therefore, Φ is a C^{1} map. Hence, Φ is differentiable on \mathbb{R}^{2} and its derivative map at (u, v), for any $(u, v) \in \mathbb{R}^{2}$, is given by multiplication by the Jacobian matrix

$$
D \Phi(u, v)=\left(\begin{array}{cc}
2 & 0 \\
0 & 2 v
\end{array}\right)
$$

that is,

$$
D \Phi(u, v)\binom{h}{k}=\left(\begin{array}{cc}
2 & 0 \\
0 & 2 v
\end{array}\right)\binom{h}{k}=\binom{2 h}{2 v k}
$$

for all $\binom{h}{k} \in \mathbb{R}^{2}$.
(b) Give the image, R, of the triangle T under the map Φ, and sketch it in the $x y$-plane.
Solution: The image of T under Φ is the set

$$
\begin{aligned}
\Phi(T) & =\left\{(x, y) \in \mathbb{R}^{2} \mid x=2 u, y=v^{2}, \text { for some }(u, v) \in \mathbb{R}\right\} \\
& =\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leqslant x \leqslant 2,0 \leqslant y \leqslant x^{2} / 4\right\}
\end{aligned}
$$

A sketch of $R=\Phi(T)$ is shown in Figure 1.

Figure 1: Sketch of Region $\Phi(T)$
(c) Evaluate the integral $\iint_{R} d x d y$, where R is the region in the $x y$-plane obtained in part (b).
Solution: Compute by means of iterated integrals

$$
\begin{aligned}
\iint_{R} d x d y & =\int_{0}^{2} \int_{0}^{x^{2} / 4} d y d x \\
& =\int_{0}^{2} \frac{x^{2}}{4} d x \\
& =\left[\frac{x^{3}}{12}\right]_{0}^{2} \\
& =\frac{2}{3} .
\end{aligned}
$$

(d) Evaluate the integral $\iint_{T}|\operatorname{det}[D \Phi(u, v)]| d u d v$, where $\operatorname{det}[D \Phi(u, v)]$ denotes the determinant of the Jacobian matrix of Φ obtained in part (a). Compare the result obtained here with that obtained in part (c).
Solution: Compute $\operatorname{det}[D \Phi(u, v)]$ to get

$$
\operatorname{det}[D \Phi(u, v)]=4 v
$$

so that

$$
\iint_{T}|\operatorname{det}[D \Phi(u, v)]| d u d v=\iint_{T} 4|v| d u d v
$$

where the region T, in the $u v$-plane is sketched in Figure 2. Observe that,

Figure 2: Sketch of Region T
in that region, $v \geqslant 0$, so that

$$
\iint_{T}|\operatorname{det}[D \Phi(u, v)]| d u d v=\iint_{T} 4 v d u d v
$$

Compute by means of iterated integrals

$$
\begin{aligned}
\iint_{T}|\operatorname{det}[D \Phi(u, v)]| d u d v & =\int_{0}^{1} \int_{0}^{u} 4 v d v d u \\
& =\int_{0}^{1} 2 u^{2} d u \\
& =\frac{2}{3}
\end{aligned}
$$

which is the same result as that obtained in part (c).
6. Consider the iterated integral $\int_{0}^{1} \int_{x^{2}}^{1} x \sqrt{1-y^{2}} d y d x$.
(a) Identify the region of integration, R, for this integral and sketch it.

Solution: The region $R=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2} \leqslant y \leqslant 1,0 \leqslant x \leqslant 1\right\}$ is sketched in Figure 3.
(b) Change the order of integration in the iterated integral and evaluate the double integral $\int_{R} x \sqrt{1-y^{2}} d x d y$.

Figure 3: Sketch of Region R

Solution: Compute

$$
\begin{aligned}
\iint_{R} x \sqrt{1-y^{2}} d x d y & =\int_{0}^{1} \int_{0}^{\sqrt{y}} x \sqrt{1-y^{2}} d x d y \\
& =\int_{0}^{1}\left[\frac{x^{2}}{2} \sqrt{1-y^{2}}\right]_{0}^{\sqrt{y}} d y \\
& =\int_{0}^{1} \frac{y}{2} \sqrt{1-y^{2}} d y
\end{aligned}
$$

Next, make the change of variables $u=1-y^{2}$ to obtain that

$$
\begin{aligned}
\iint_{R} x \sqrt{1-y^{2}} d x d y & =-\frac{1}{4} \int_{1}^{0} \sqrt{u} d u \\
& =\frac{1}{4} \int_{0}^{1} \sqrt{u} d u \\
& =\frac{1}{6}
\end{aligned}
$$

7. What is the region R over which you integrate when evaluating the iterated integral

$$
\int_{1}^{2} \int_{1}^{x} \frac{x}{\sqrt{x^{2}+y^{2}}} \mathrm{~d} y \mathrm{~d} x ?
$$

Rewrite this as an iterated integral first with respect to x, then with respect to y. Evaluate this integral. Which order of integration is easier?

Figure 4: Sketch of Region R
Solution: The region $R=\left\{(x, y) \in \mathbb{R}^{2} \mid 1 \leqslant y \leqslant x, 1 \leqslant x \leqslant 2\right\}$ is sketched in Figure 4. Interchanging the order of integration, we obtain that

$$
\begin{equation*}
\iint_{R} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y=\int_{1}^{2} \int_{y}^{2} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y \tag{19}
\end{equation*}
$$

The iterated integral in (19) is easier to evaluate; in fact,

$$
\begin{aligned}
\iint_{R} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y & =\int_{1}^{2} \int_{y}^{2} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y \\
& =\int_{1}^{2}\left[\sqrt{x^{2}+y^{2}}\right]_{y}^{2} d y \\
& =\int_{1}^{2}\left[\sqrt{4+y^{2}}-\sqrt{2} y\right] d y
\end{aligned}
$$

We therefore get that

$$
\begin{equation*}
\iint_{R} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y=\int_{1}^{2} \sqrt{4+y^{2}} d y-\sqrt{2} \int_{1}^{2} y d y \tag{20}
\end{equation*}
$$

Evaluating the second integral on the right-hand side of (20) yields

$$
\begin{equation*}
\int_{1}^{2} y d y=\frac{3}{2} . \tag{21}
\end{equation*}
$$

The first integral on the right-hand side of (20) leads to

$$
\int_{1}^{2} \sqrt{4+y^{2}} d y=\left[\frac{y}{2} \sqrt{4+y^{2}}+\frac{4}{2} \ln \left|y+\sqrt{4+y^{2}}\right|\right]_{1}^{2}
$$

which evaluates to

$$
\begin{equation*}
\int_{1}^{2} \sqrt{4+y^{2}} d y=2 \sqrt{2}-\frac{\sqrt{5}}{2}+2 \ln \left(\frac{2+\sqrt{8}}{1+\sqrt{5}}\right) \tag{22}
\end{equation*}
$$

Substituting (21) and (22) into (20) we obtain

$$
\iint_{R} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y=\frac{\sqrt{2}}{2}-\frac{\sqrt{5}}{2}+2 \ln \left(\frac{2+\sqrt{8}}{1+\sqrt{5}}\right)
$$

8. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ denote a twice-differentiable real valued function and define

$$
u(x, t)=f(x-c t) \quad \text { for all } \quad(x, t) \in \mathbb{R}^{2}
$$

where c is a real constant.
Verify that $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$.
Solution: Apply the Chain Rule to obtain

$$
\frac{\partial u}{\partial x}=f^{\prime}(x-c t) \cdot \frac{\partial}{\partial x}(x-c t)=f^{\prime}(x-c t)
$$

Similarly,

$$
\begin{gather*}
\frac{\partial^{2} u}{\partial x^{2}}=f^{\prime \prime}(x-c t) \tag{23}\\
\frac{\partial u}{\partial t}=f^{\prime}(x-c t) \cdot \frac{\partial}{\partial t}(x-c t)=-c f^{\prime}(x-c t)
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} f^{\prime \prime}(x-c t) \tag{24}
\end{equation*}
$$

Combining (23) and (24) we see that

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} f^{\prime \prime}(x-c t)=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

which was to be verified.
9. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ denote a twice-differentiable real valued function and define

$$
u(x, y)=f(r) \quad \text { where } r=\sqrt{x^{2}+y^{2}} \quad \text { for all }(x, y) \in \mathbb{R}^{2}
$$

(a) Define the vector field $F(x, y)=\nabla u(x, y)$. Express F in terms of f^{\prime} and r.
Solution: Compute

$$
\begin{equation*}
F(x, y)=\nabla u(x, y)=\frac{\partial u}{\partial x} \widehat{i}+\frac{\partial u}{\partial y} \widehat{j} \tag{25}
\end{equation*}
$$

where, by the Chain Rule,

$$
\begin{equation*}
\frac{\partial u}{\partial x}=f^{\prime}(r) \frac{\partial r}{\partial x} \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial u}{\partial y}=f^{\prime}(r) \frac{\partial r}{\partial y} . \tag{27}
\end{equation*}
$$

In order to compute $\frac{\partial r}{\partial x}$ and $\frac{\partial r}{\partial x}$, write

$$
\begin{equation*}
r^{2}=x^{2}+y^{2}, \tag{28}
\end{equation*}
$$

and differentiate with respect to x on both sides of (28) to obtain

$$
2 r \frac{\partial r}{\partial x}=2 x
$$

from which we get

$$
\begin{equation*}
\frac{\partial r}{\partial x}=\frac{x}{r}, \quad \text { for }(x, y) \neq(0,0) \tag{29}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\frac{\partial r}{\partial y}=\frac{y}{r}, \quad \text { for }(x, y) \neq(0,0) \tag{30}
\end{equation*}
$$

Substituting (29) into (26) yields

$$
\begin{equation*}
\frac{\partial u}{\partial x}=\frac{f^{\prime}(r)}{r} x \tag{31}
\end{equation*}
$$

Similarly, substituting (30) into (27) yields

$$
\begin{equation*}
\frac{\partial u}{\partial y}=\frac{f^{\prime}(r)}{r} y \tag{32}
\end{equation*}
$$

Next, substitute (31) and (32) into (25) to obtain

$$
\begin{equation*}
F(x, y)=\frac{f^{\prime}(r)}{r}(x \widehat{i}+y \widehat{j}) \tag{33}
\end{equation*}
$$

(b) Recall that the divergence of a vector field $F=P \widehat{i}+Q \widehat{j}$ is the scalar field given by $\operatorname{div} F=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}$. Express the divergence of the gradient of u, in terms of $f^{\prime}, f^{\prime \prime}$ and r.
The expression $\operatorname{div}(\nabla u)$ is called the Laplacian of u, and is denoted by Δu or $\nabla^{2} u$.
Solution: From (33) we obtain that

$$
P(x, y)=\frac{f^{\prime}(r)}{r} x \quad \text { and } \quad Q(x, y)=\frac{f^{\prime}(r)}{r} y
$$

so that, applying the Product Rule, Chain Rule and Quotient Rule,

$$
\begin{align*}
\frac{\partial P}{\partial x} & =\frac{f^{\prime}(r)}{r}+x \frac{d}{d r}\left[\frac{f^{\prime}(r)}{r}\right] \frac{\partial r}{\partial x} \tag{34}\\
& =\frac{f^{\prime}(r)}{r}+x \frac{r f^{\prime \prime}(r)-f^{\prime}(r)}{r^{2}} \frac{x}{r}
\end{align*}
$$

where we have also used (29). Simplifying the expression in (34) yields

$$
\begin{equation*}
\frac{\partial P}{\partial x}=\frac{f^{\prime}(r)}{r}+x^{2} \frac{f^{\prime \prime}(r)}{r^{2}}-x^{2} \frac{f^{\prime}(r)}{r^{3}} . \tag{35}
\end{equation*}
$$

Similar calculations lead to

$$
\begin{equation*}
\frac{\partial Q}{\partial y}=\frac{f^{\prime}(r)}{r}+y^{2} \frac{f^{\prime \prime}(r)}{r^{2}}-y^{2} \frac{f^{\prime}(r)}{r^{3}} \tag{36}
\end{equation*}
$$

Adding the results in (35) and (36), we then obtain that

$$
\begin{align*}
\operatorname{div} F & =\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y} \\
& =2 \frac{f^{\prime}(r)}{r}+r^{2} \frac{f^{\prime \prime}(r)}{r^{2}}-r^{2} \frac{f^{\prime}(r)}{r^{3}} \tag{37}
\end{align*}
$$

where we have used (28). Simplifying the expression in (37), we get that

$$
\operatorname{div} F=f^{\prime \prime}(r)+\frac{f^{\prime}(r)}{r}
$$

10. Let $f(x, y)=4 x-7 y$ for all $(x, y) \in \mathbb{R}^{2}$, and $g(x, y)=2 x^{2}+y^{2}$.
(a) Sketch the graph of the set $C=g^{-1}(1)=\left\{(x, y) \in \mathbb{R}^{2} \mid g(x, y)=1\right\}$.

Solution: The curve C is the graph of the equation

$$
\frac{x^{2}}{1 / 2}+y^{2}=1
$$

which is sketched in Figure 5.

Figure 5: Sketch of ellipse
(b) Show that at the points where f has an extremum on C, the gradient of f is parallel to the gradient of g.
Solution: Let $\sigma:[0,2 \pi] \rightarrow \mathbb{R}^{2}$ denote the C^{1} parametrization of C given by

$$
\sigma(t)=\left(\frac{\sqrt{2}}{2} \cos t, \sin t\right), \quad \text { for all } t \in[0,2 \pi]
$$

We then have that

$$
\begin{equation*}
g(\sigma(t))=1, \quad \text { for all } t \tag{38}
\end{equation*}
$$

Differentiating on both sides of (38) yields that

$$
\nabla g(\sigma(t)) \cdot \sigma^{\prime}(t)=0, \quad \text { for all } t
$$

where we have applied the Chain Rule, which shows that $\nabla g(x, y)$ is perpendicular to the tangent vector to C at (x, y).
Next, suppose that $f(\sigma(t))$ has a critical point at t_{o}. Then, the derivative of $f(\sigma(t))$ at t_{o} is 0 ; that is,

$$
\nabla f\left(\sigma\left(t_{o}\right)\right) \cdot \sigma^{\prime}\left(t_{0}\right)=0
$$

where we have applied the Chain Rule. It then follows that $\nabla f\left(x_{o}, y_{o}\right)$ is perpendicular to the tangent vector to C at a critical point (x_{o}, y_{o}). Hence, $\nabla f\left(x_{o}, y_{o}\right)$ must be parallel to $\nabla g\left(x_{o}, y_{o}\right)$.
(c) Find the largest and the smallest value of f on C.

Solution: By the result of part (b), at a critical point, (x, y), of f on C, it must be the case that

$$
\begin{equation*}
\nabla g(x, y)=\lambda \nabla f(x, y) \tag{39}
\end{equation*}
$$

for some non-zero real number λ, where

$$
\begin{equation*}
\nabla f(x, y)=4 \widehat{i}-7 \widehat{j} \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla g(x, y)=4 x \widehat{i}+2 y \widehat{j} \tag{41}
\end{equation*}
$$

Substituting (40) and (41) into (39) yields the pair of equations

$$
\begin{equation*}
x=\lambda \tag{42}
\end{equation*}
$$

and

$$
\begin{equation*}
2 y=-7 \lambda \tag{43}
\end{equation*}
$$

Substituting the expressions for x and y in (42) and (43), respectively, into the equation of the ellipse

$$
2 x^{2}+y^{2}=1
$$

yields that

$$
\frac{57}{4} \lambda^{2}=1
$$

from which we get that

$$
\begin{equation*}
\lambda= \pm \frac{2 \sqrt{57}}{57} \tag{44}
\end{equation*}
$$

The values for λ in (44), together with (42) and (43), yield the critical points

$$
\begin{equation*}
\left(\frac{2 \sqrt{57}}{57},-\frac{7 \sqrt{57}}{57}\right) \quad \text { and } \quad\left(-\frac{2 \sqrt{57}}{57}, \frac{7 \sqrt{57}}{57}\right) \tag{45}
\end{equation*}
$$

Evaluating the function f at each of the critical points in (45) we obtain that

$$
f\left(\frac{2 \sqrt{57}}{57},-\frac{7 \sqrt{57}}{57}\right)=\sqrt{57} \quad \text { and } \quad f\left(-\frac{2 \sqrt{57}}{57}, \frac{7 \sqrt{57}}{57}\right)=-\sqrt{57}
$$

Consequently, the largest value of f on C is $\sqrt{57}$ and the smallest value is $-\sqrt{57}$.
11. Let ω be the differential 1-form in \mathbb{R}^{3} given by $\omega=x d x+y d y+z d z$.
(a) Compute the differential, $d \omega$, of ω.

Solution: Compute $d \omega=d x \wedge d x+d y \wedge d y+d z \wedge d z=0$.
(b) If possible, find a differential 0-form, f, such that $\omega=d f$.

Solution: Let $f(x, y, z)=\frac{x^{2}}{2}+\frac{y^{2}}{2}+\frac{z^{2}}{2}$. Then,

$$
d f=x d x+y d y+z d z=\omega .
$$

(c) Let C be parametrized by a C^{1} connecting $P_{o}(1,-1,-2)$ to $P_{1}(-1,1,2)$. Compute the line integral $\int_{C} \omega$.
Solution: Apply the Fundamental Theorem of Calculus,

$$
\int_{C} \omega=\int_{C} d f=f\left(P_{1}\right)-f\left(P_{o}\right),
$$

where f is as given in part (b). Consequently,

$$
\int_{C} \omega=f(-1,1,2)-f(1,-1,-2)=3-3=0
$$

(d) Let C denote any simple closed curve in \mathbb{R}^{3}. Evaluate the line integral $\int_{C} \omega$.
Solution: $\int_{C} \omega=0$, since C is closed and ω is exact.
12. Let f denote a differential 0 -form in \mathbb{R}^{3} and ω a a differential 1-form in \mathbb{R}^{3}.
(a) Verify that $d(d f)=0$.

Solution: Compute

$$
\begin{aligned}
d(d f)= & d\left(\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z\right) \\
= & d\left(\frac{\partial f}{\partial x}\right) \wedge d x+d\left(\frac{\partial f}{\partial y}\right) \wedge d y+d\left(\frac{\partial f}{\partial z}\right) \wedge d z \\
= & \frac{\partial^{2} f}{\partial x^{2}} d x \wedge d x+\frac{\partial^{2} f}{\partial y \partial x} d y \wedge d x+\frac{\partial^{2} f}{\partial z \partial x} d z \wedge d x \\
& \quad \frac{\partial^{2} f}{\partial x \partial y} d x \wedge d y+\frac{\partial^{2} f}{\partial y^{2}} d y \wedge d y+\frac{\partial^{2} f}{\partial z \partial y} d z \wedge d y \\
& \quad+\frac{\partial^{2} f}{\partial x \partial z} d x \wedge d z+\frac{\partial^{2} f}{\partial y \partial z} d y \wedge d z+\frac{\partial^{2} f}{\partial z^{2}} d z \wedge d z
\end{aligned}
$$

so that

$$
\begin{align*}
d(d f)= & \left(\frac{\partial^{2} f}{\partial y \partial z}-\frac{\partial^{2} f}{\partial z \partial y}\right) d y \wedge d z \\
& +\left(\frac{\partial^{2} f}{\partial z \partial x}-\frac{\partial^{2} f}{\partial x \partial z}\right) d z \wedge d x \tag{46}\\
& \quad+\left(\frac{\partial^{2} f}{\partial x \partial y}-\frac{\partial^{2} f}{\partial y \partial x}\right) d x \wedge d y
\end{align*}
$$

It follows from (46) and the fact that the mixed second partial derivatives of a C^{∞} function are equal that $d(d f)=0$.
(b) Verify that $d(d \omega)=0$.

Solution: Since ω is a differential 1 -form, we may write

$$
\omega=f_{1} d x+f_{2} d y+f_{3} d z
$$

where f_{1}, f_{2} and f_{3} are differential 0 -forms. Thus, since the operator d is linear

$$
d(d \omega)=d\left(d f_{1}\right) \wedge d x+d\left(d f_{2}\right) \wedge d y+d\left(d f_{3}\right) \wedge d z
$$

which is 0 since $d\left(d f_{j}\right)=0$, for $j=1,2,3$, by the result from part (a). Hence, $d(d \omega)=0$, which was to be shown.
13. Let f and g denote differential 0 -forms in \mathbb{R}^{3}, and ω and η a differential 1-forms in \mathbb{R}^{3}. Derive the following identities
(a) $d(f g)=g d f+f d g$.

Solution: Compute

$$
\begin{align*}
d(f g)= & \frac{\partial(f g)}{\partial x} d x+\frac{\partial(f g)}{\partial y} d y+\frac{\partial(f g)}{\partial z} d z \\
= & \left(f \frac{\partial g}{\partial x}+g \frac{\partial f}{\partial x}\right) d x \\
& +\left(f \frac{\partial g}{\partial y}+g \frac{\partial f}{\partial y}\right) d y \tag{47}\\
& +\left(f \frac{\partial g}{\partial z}+g \frac{\partial f}{\partial z}\right) d z
\end{align*}
$$

where we have used the Product Rule. Rearranging terms in (47) we obtain that

$$
\begin{aligned}
d(f g)= & g\left(\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z\right) \\
& f\left(\frac{\partial g}{\partial x} d x+\frac{\partial g}{\partial y} d y+\frac{\partial g}{\partial z} d z\right) \\
= & g d f+f d g
\end{aligned}
$$

(b) $d(f \omega)=d f \wedge \omega+f d \omega$.

Solution: Write $\omega=g_{1} d x+g_{2} d y+g_{3} d z$, where g_{1}, g_{2} and g_{3} are differential 0 -forms. We then have that

$$
f \omega=f g_{1} d x+f g_{2} d y+f g_{3} d z
$$

so that

$$
\begin{equation*}
d(f \omega)=d\left(f g_{1}\right) \wedge d x+d\left(f g_{2}\right) \wedge d y+d\left(f g_{3}\right) \wedge d z \tag{48}
\end{equation*}
$$

Applying the result from part (a), we obtain from (48) that

$$
\begin{align*}
& d(f \omega)=\left(f d g_{1}+g_{1} d f\right) \wedge d x+\left(f d g_{2}+g_{2} d f\right) \wedge d y \\
&+\left(f d g_{3}+g_{3} d f\right) \wedge d z \\
&= f d g_{1} \wedge d x+g_{1} d f \wedge d x \\
&+f d g_{2} \wedge d y+g_{2} d f \wedge d y \tag{49}\\
& \quad+f d g_{3} \wedge d z+g_{3} d f \wedge d z \\
&= f\left(d g_{1} \wedge d x+d g_{2} \wedge d y+d g_{3} \wedge d z\right) \\
& \quad+d f \wedge g_{1} d x+d f \wedge g_{2} d y+d f \wedge g_{3} d z
\end{align*}
$$

where we have used the bi-linearity of the wedge product. Using bilinearity again, we obtain from (49) that

$$
\begin{aligned}
d(f \omega) & =f d \omega+d f \wedge\left(g_{1} d x+g_{2} d y+g_{3} d z\right) \\
& =f d \omega+d f \wedge \omega
\end{aligned}
$$

which was to be shown.
(c) $d(\omega \wedge \eta)=d \omega \wedge \eta-\omega \wedge d \eta$.

Solution: Write $\omega=f_{1} d x+f_{2} d y+f_{3} d z$, where f_{1}, f_{2} and f_{3} are differential 0 -forms, and compute

$$
\begin{aligned}
\omega \wedge \eta & =\left(f_{1} d x+f_{2} d y+f_{3} d z\right) \wedge \eta \\
& =f_{1} d x \wedge \eta+f_{2} d y \wedge \eta+f_{3} d z \wedge \eta
\end{aligned}
$$

so that

$$
\begin{equation*}
d(\omega \wedge \eta)=d\left(f_{1} d x \wedge \eta\right)+d\left(f_{2} d y \wedge \eta\right)+d\left(f_{3} d z \wedge \eta\right) \tag{50}
\end{equation*}
$$

Using the result from part (b), we obtain from (50) that

$$
\begin{array}{rl}
d(\omega \wedge \eta)=f_{1} & d(d x \wedge \eta)+d f_{1} \wedge d x \wedge \eta \\
+ & f_{2} d(d y \wedge \eta)+d f_{2} \wedge d y \wedge \eta \tag{51}\\
& +f_{3} d(d z \wedge \eta)+d f_{3} \wedge d z \wedge \eta
\end{array}
$$

where we have used the associativity of the wedge product. Next, write $\eta=g_{1} d x+g_{2} d y+g_{3} d z$, where g_{1}, g_{2} and g_{3} are differential 0-forms. Then,

$$
d x \wedge \eta=g_{2} d x \wedge d y+g_{3} d x \wedge d z
$$

so that

$$
\begin{align*}
d(d x \wedge \eta) & =d g_{2} \wedge d x \wedge d y+d g_{3} \wedge d x \wedge d z \\
& =\frac{\partial g_{2}}{\partial z} d z \wedge d x \wedge d y+\frac{\partial g_{3}}{\partial y} d y \wedge d x \wedge d z \tag{52}\\
& =\left(\frac{\partial g_{2}}{\partial z}-\frac{\partial g_{3}}{\partial y}\right) d x \wedge d y \wedge d z
\end{align*}
$$

where we have used the anti-commutativity of the wedge product. On the other hand, note that

$$
\begin{aligned}
d \eta= & d g_{1} \wedge d x+d g_{2} \wedge d y+d g_{3} \wedge d z \\
= & \left(\frac{\partial g_{1}}{\partial x} d x+\frac{\partial g_{1}}{\partial y} d y+\frac{\partial g_{1}}{\partial z} d z\right) \wedge d x \\
& +\left(\frac{\partial g_{2}}{\partial x} d x+\frac{\partial g_{2}}{\partial y} d y+\frac{\partial g_{2}}{\partial z} d z\right) \wedge d y \\
& +\left(\frac{\partial g_{3}}{\partial x} d x+\frac{\partial g_{3}}{\partial y} d y+\frac{\partial g_{3}}{\partial z} d z\right) \wedge d z
\end{aligned}
$$

so that, using the anti-commutativity of the wedge product,

$$
\begin{aligned}
& d \eta= \frac{\partial g_{1}}{\partial y} d y \wedge d x+\frac{\partial g_{1}}{\partial z} d z \wedge d x \\
&+\frac{\partial g_{2}}{\partial x} d x \wedge d y+\frac{\partial g_{2}}{\partial z} d z \wedge d y \\
&+\frac{\partial g_{3}}{\partial x} d x \wedge d z+\frac{\partial g_{3}}{\partial y} d y \wedge d z \\
&=\left(\frac{\partial g_{3}}{\partial y} d y \wedge d z+\frac{\partial g_{2}}{\partial z} d z \wedge d y\right. \\
&+\frac{\partial g_{3}}{\partial x} d x \wedge d z+\frac{\partial g_{1}}{\partial z} d z \wedge d x \\
&+\frac{\partial g_{2}}{\partial x} d x \wedge d y+\frac{\partial g_{1}}{\partial y} d y \wedge d x \\
&=\left(\frac{\partial g_{3}}{\partial y}-\frac{\partial g_{2}}{\partial z}\right) d y \wedge d z \\
&+\left(\frac{\partial g_{1}}{\partial z}-\frac{\partial g_{3}}{\partial x}\right) d z \wedge d x \\
&+\left(\frac{\partial g_{2}}{\partial x}-\frac{\partial g_{1}}{\partial y}\right) d x \wedge d y
\end{aligned}
$$

so that

$$
\begin{align*}
d \eta=(& \left.\frac{\partial g_{3}}{\partial y}-\frac{\partial g_{2}}{\partial z}\right) d y \wedge d z \\
& +\left(\frac{\partial g_{1}}{\partial z}-\frac{\partial g_{3}}{\partial x}\right) d z \wedge d x \tag{53}\\
& +\left(\frac{\partial g_{2}}{\partial x}-\frac{\partial g_{1}}{\partial y}\right) d x \wedge d y
\end{align*}
$$

Taking the wedge product with $d x$ on the left of (53) yields

$$
\begin{equation*}
d x \wedge d \eta=\left(\frac{\partial g_{3}}{\partial y}-\frac{\partial g_{2}}{\partial z}\right) d x \wedge d y \wedge d z \tag{54}
\end{equation*}
$$

Comparison of (52) and (54) yields the identity

$$
\begin{equation*}
d(d x \wedge \eta)=-d x \wedge d \eta \tag{55}
\end{equation*}
$$

Similar calculations using (53) yield the additional identities

$$
\begin{equation*}
d(d y \wedge \eta)=-d y \wedge d \eta \tag{56}
\end{equation*}
$$

and

$$
\begin{equation*}
d(d z \wedge \eta)=-d z \wedge d \eta \tag{57}
\end{equation*}
$$

Next, substitute the identities in (55), (56) and (57) into (51) to obtain

$$
\left.\left.\begin{array}{rl}
d(\omega \wedge \eta)=- & f_{1}(d x \wedge d \eta)+d f_{1} \wedge d x
\end{array}\right) \eta, \begin{array}{l}
-f_{2}(d y \wedge d \eta)+d f_{2} \wedge d y \wedge \eta \\
-
\end{array}\right)
$$

which leads to

$$
\begin{align*}
d(\omega \wedge \eta)=- & \left.\left(f_{1} d x+f_{2} d y+f_{3} d z\right) \wedge d \eta\right) \\
& +\left(d f_{1} \wedge d x+d f_{2} \wedge d y+d f_{3} \wedge d z\right) \wedge \eta \tag{58}
\end{align*}
$$

by virtue of the bi-linearity of the wedge product. We therefore obtain from (58) that

$$
d(\omega \wedge \eta)=-\omega \wedge d \eta+d \omega \wedge \eta
$$

which was to be shown.
14. Let R denote the square, $R=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leqslant x \leqslant 1,0 \leqslant y \leqslant 1\right\}$, and ∂R denote the boundary of R oriented in the counterclockwise sense. Evaluate the line integral

$$
\int_{\partial R}\left(y^{2}+x^{3}\right) d x+x^{4} d y .
$$

Solution: Apply the Fundamental Theorem of Calculus to get

$$
\begin{aligned}
\int_{\partial R}\left(y^{2}+x^{3}\right) d x+x^{4} d y & =\int_{R} d\left[\left(y^{2}+x^{3}\right) d x+x^{4} d y\right] \\
& \left.=\int_{R} 2 y d y+3 x^{2} d x\right) \wedge d x+4 x^{3} d x \wedge d y \\
& =\int_{R} 2 y d y \wedge d x+4 x^{3} d x \wedge d y \\
& =\int_{R}\left(4 x^{3}-2 y\right) d x \wedge d y
\end{aligned}
$$

so that

$$
\begin{equation*}
\int_{\partial R}\left(y^{2}+x^{3}\right) d x+x^{4} d y=\iint_{R}\left(4 x^{3}-2 y\right) d x d y \tag{59}
\end{equation*}
$$

since ∂R is oriented in the counterclockwise sense. Evaluating the double integral in (59) we obtain that

$$
\begin{aligned}
\int_{\partial R}\left(y^{2}+x^{3}\right) d x+x^{4} d y & =\int_{0}^{1} \int_{0}^{1}\left(4 x^{3}-2 y\right) d x d y \\
& =\int_{0}^{1}\left[x^{4}-2 x y\right]_{0}^{1} d y \\
& =\int_{0}^{1}(1-2 y) d y \\
& =\left[y-y^{2}\right]_{0}^{1} \\
& =0
\end{aligned}
$$

