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Solutions to Review Problems for Final Exam

1. In this problem, u and v denote vectors in Rn.

(a) Use the triangle inequality to derive the inequality

| ‖v‖ − ‖u‖ | 6 ‖v − u‖ for all u, v ∈ Rn. (1)

Solution: Write
‖u‖ = ‖(u− v) + v‖

and applying the triangle inequality to obtain

‖u‖ 6 ‖u− v‖+ ‖v‖,

from which we get that

‖u‖ − ‖v‖ 6 ‖v − u‖. (2)

Interchanging the roles for u and v in (2) we obtain

‖v‖ − ‖u‖ 6 ‖u− v‖.

from which we get
‖v‖ − ‖u‖ 6 ‖v − u‖. (3)

Combining (2) and (3) yields

−‖v − u‖ 6 ‖v‖ − ‖u‖ 6 ‖v − u‖,

which is (1). �

(b) Use the inequality derived in the previous part to show that the function
f : Rn → R given by f(v) = ‖v‖, for all v ∈ Rn, is continuous in Rn.

Solution: Fix u ∈ Rn and apply the inequality in (1) to any v ∈ Rn to
obtain that

|‖v‖ − ‖u‖| 6 ‖v − u‖,
or

|f(v)− f(u)| 6 ‖v − u‖. (4)

Next, apply the Squeeze Lemma to obtain from (4) that

lim
‖v−u‖→0

|f(v)− f(u)| = 0,

which shows that f is continuous at u for any u ∈ Rn. �
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(c) Prove that the function g : Rn → R given by g(v) = sin(‖v‖), for allv ∈ Rn,
is continuous.

Solution: Observe that g = sin ◦f , where f : Rn → R is as defined in
part (b). Thus, g is the composition of two continuous functions, and is,
therefore, continuous. �

2. Define the scalar field f : Rn → R by f(v) = ‖v‖2 for all v ∈ Rn.

(a) Show that f is differentiable in Rn and compute the linear map

Df(u) : Rn → R for all u ∈ Rn.

What is the gradient of f at u for all u ∈ Rn?

Solution: Let u ∈ Rn and compute

f(u+ w) = ‖u+ w‖2

= (u+ w) · (u+ w)

= u · u+ u · w + w · u+ w · w

= ‖u‖2 + 2u · w + ‖w‖2,

for w ∈ Rn, where we have used the symmetry of the dot product and the
fact that ‖v‖2 = v · v for all v ∈ Rn. We therefore have that

f(u+ w) = f(u) + 2u · w + ‖w‖2, for all u ∈ Rn and w ∈ Rn. (5)

Writing
Df(u)w = 2u · w, for all u ∈ Rn and w ∈ Rn, (6)

and
Eu(w) = ‖w‖2, for all u ∈ Rn and w ∈ Rn, (7)

we see that (5) can be rewritten as

f(u+ w) = f(u) +Df(u)w + Eu(w), for all u ∈ Rn and w ∈ Rn, (8)

where, according to (6), Df(u) : Rn → Rn defines a linear transformation,
and, by virtue of (7),

|Eu(w)|
‖w‖

= ‖w‖, for w 6= 0,
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from which we get that

lim
‖w‖→0

|Eu(w)|
‖w‖

= 0.

Consequently, in view of (8), we conclude that f is differentiable at every
u ∈ Rn, derivative at u given by (6).

Since Df(u)w = ∇f(u) ·w, for all u and w in Rn, by comparing with (6),
we see that

∇f(u) = 2u, for all u ∈ Rn.

�

Alternate Solution: Alternatively, for u = (x1, x2, . . . , xn) ∈ Rn, we
have that

f(u) = x21 + x22 + · · ·+ x2n;

so that
∂f

∂xj
(u) = 2xj, for j = 1, 2, . . . , n.

Thus, all the partial derivatives of f are continuous on Rn; that is, f is a
C1 function. Consequently, f is differentiable on Rn. Furthermore,

Df(u)w =
(
2x1 2x2 · · · 2xn

)
w, for all w ∈ Rn,

which can be written as

Df(u)w = 2u · w, for all w ∈ Rn. (9)

It then follows that ∇f(u) = 2u for all u ∈ Rn. �

(b) Let v̂ denote a unit vector in Rn. For a fixed vector u in Rn, define
g : R→ R by g(t) = ‖u− tv̂‖2, for all t ∈ R. Show that g is differentiable
and compute g′(t) for all t ∈ R.

Solution: Observe that g = f ◦ σ, where σ : R→ Rn is given by

σ(t) = u− tv̂, for all t ∈ R. (10)

Thus, σ is a differentiable path with

σ′(t) = −v̂, for all t ∈ R. (11)

Thus, by the result from part (a), g is the composition of two differentiable
functions. Consequently, by the Chain Rule, g is differentiable with

g′(t) = Df(σ(t))σ′(t), for all t ∈ R. (12)
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Thus, using (9) and (11), we obtain from (12) that

g′(t) = 2σ(t) · (−v̂), for all t ∈ R,

or
g′(t) = −2σ(t) · v̂, for all t ∈ R. (13)

Thus, using (10), we obtain from (13) that

g′(t) = −2(u− tv̂) · v̂, for all t ∈ R,

which leads to
g′(t) = 2t− 2u · v̂, for all t ∈ R, (14)

since v̂ is a unit vector in Rn. �

(c) Let v̂ be as in the previous part. For any u ∈ Rn, give the point on the
line spanned by v̂ which is the closest to u. Justify your answer.

Solution: It follows from (14) that g′′(t) = 2 > 0 for all t ∈ R; so that g
has a global minimum when g′(t) = 0. We then obtain from (14) that g(t)
is the smallest possible when

t = u · v̂.

Consequently, the point on the line spanned by v̂ which is the closest to u
is (u · v̂)v̂, or the orthogonal projection of u onto the direction of v̂. �

3. Let I denote an open interval which contains the real number a. Assume that
σ : I → Rn is a C1 parametrization of a curve C in Rn. Define s : I → R as
follows:

s(t) = arlength along the curve C from σ(a) to σ(t), (15)

for all t ∈ I.

(a) Give a formula, in terms of an integral, for computing s(t) for all t ∈ I.

Answer:

s(t) =

∫ t

a

‖σ′(τ)‖ dτ, for all t ∈ I. (16)

�
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(b) Prove that s is differentiable on I and compute s′(t) for all t ∈ I. Deduce
that s is strictly increasing with increasing t.

Solution: It follows from the assumption that σ is C1, the Fundamental
Theorem of Calculus, and (17), that s is differentiable and

s′(t) = ‖σ′(t)‖, for all t ∈ I. (17)

Since we are also assuming that σ is a parametrization of a C1 curve, C,
it follows that σ′(t) 6= 0 for all t ∈ I. Consequently, we obtain from (17)
that

s′(t) > 0, for all t ∈ I,

which shows that s(t) is strictly increasing with increasing t. �

(c) Let ` = arclength of C, and suppose that γ : [0, `]→ Rn is a a parametriza-
tion of C with the arclength parameter s defined in (15); so that,

C = {γ(s) | 0 6 s 6 `}.

Use the fact that σ(t) = γ(s(t)), for all t ∈ [a, b], to show γ′(s) is a unit
vector that is tangent to the curve C at the point γ(s).

Solution: Note that σ = γ ◦ s is a composition of two differentiable
functions, by the result of part (b). Consequently, by the Chain Rule,

σ′(t) =
ds

dt
γ′(s), for t ∈ (a, b).

Thus, using (17),

σ′(t) = ‖σ′(t)‖γ′(s), for t ∈ (a, b).

So, using the fact that ‖σ′(t)‖ > 0 for all t ∈ (a, b),

γ′(s) =
1

‖σ′(t)‖
σ′(t), for t ∈ (a, b),

which shows that γ′(s) is a unit vector that is tangent to the curve C at
the point γ(s). �
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4. Let I denote an open interval of real numbers and f : I → R be a differentiable
function. Let a, b ∈ I be such that a < b, and define C to the section of the
graph of y = f(x) from the point (a, f(a)) to the point (b, f(b)); that is,

C = {(x, y) ∈ R2 | y = f(x) and a 6 x 6 b}

(a) By providing an appropriate parametrization of C, compute the arclenth
of C, `(C).

Solution: Parametrize C by σ : [a, b]→ R2 given by

σ(t) = (t, f(t)), for a 6 t 6 b.

Then,
σ′(t) = (1, f ′(t)), for a 6 t 6 b;

so that
‖σ′(t)‖ =

√
1 + [f ′(t)]2, for a 6 t 6 b.

Therefore,

`(C) =

∫ b

a

√
1 + [f ′(t)]2 dt. (18)

�

(b) Let f(x) = 5− 2x3/2, for x > 0. Compute the exact arcength of y = f(x)
over the interval [0, 11].

Solution: We use the formula in (18) with

f ′(t) = −3t1/2, for t > 0.

Thus,

`(C) =

∫ 11

0

√
1 + 9t dt

=

[
2

27
(1 + 9t)3/2

]11
0

=
2

27
(1000− 1)

= 74.

�
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5. Let Φ: R2 → R2 denote the map from the uv–plane to the xy–plane given by

Φ

(
u
v

)
=

(
2u
v2

)
for all

(
u
v

)
∈ R2,

and let T be the oriented triangle [(0, 0), (1, 0), (1, 1)] in the uv–plane.

(a) Show that Φ is differentiable and give a formula for its derivative, DΦ(u, v),

at every point

(
u
v

)
in R2.

Solution: Write

Φ

(
u
v

)
=

(
f(u, v)
g(u, v)

)
for all

(
u
v

)
∈ R2,

where f(u, v) = 2u and g(u, v) = v2 for all

(
u
v

)
∈ R2. Observe that the

partial derivatives of f and g exist and are given by

∂f

∂u
(u, v) = 2,

∂f

∂v
(u, v) = 0

∂g

∂u
(u, v) = 0,

∂g

∂v
(u, v) = 2v.

Note that the partial derivatives of f and g are continuous. Therefore,
Φ is a C1 map. Hence, Φ is differentiable on R2 and its derivative map
at (u, v), for any (u, v) ∈ R2, is given by multiplication by the Jacobian
matrix

DΦ(u, v) =

(
2 0
0 2v

)
;

that is,

DΦ(u, v)

(
h
k

)
=

(
2 0
0 2v

)(
h
k

)
=

(
2h
2vk

)
for all

(
h
k

)
∈ R2. �

(b) Give the image, R, of the triangle T under the map Φ, and sketch it in the
xy–plane.

Solution: The image of T under Φ is the set

Φ(T ) = {(x, y) ∈ R2 | x = 2u, y = v2, for some (u, v) ∈ R}

= {(x, y) ∈ R2 | 0 6 x 6 2, 0 6 y 6 x2/4}.

A sketch of R = Φ(T ) is shown in Figure 1. �
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x

y

R
y = x2/4

Figure 1: Sketch of Region Φ(T )

(c) Evaluate the integral

∫∫
R

dxdy, where R is the region in the xy–plane

obtained in part (b).

Solution: Compute by means of iterated integrals∫∫
R

dxdy =

∫ 2

0

∫ x2/4

0

dy dx

=

∫ 2

0

x2

4
dx

=

[
x3

12

]2
0

=
2

3
.

�

(d) Evaluate the integral

∫∫
T

| det[DΦ(u, v)]| dudv, where det[DΦ(u, v)] de-

notes the determinant of the Jacobian matrix of Φ obtained in part (a).
Compare the result obtained here with that obtained in part (c).

Solution: Compute det[DΦ(u, v)] to get

det[DΦ(u, v)] = 4v.

so that ∫∫
T

| det[DΦ(u, v)]|dudv =

∫∫
T

4|v| dudv,

where the region T , in the uv–plane is sketched in Figure 2. Observe that,
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u

v

T
�
�

�
�
�
�v = u

Figure 2: Sketch of Region T

in that region, v > 0, so that∫∫
T

| det[DΦ(u, v)]|dudv =

∫∫
T

4v dudv,

Compute by means of iterated integrals∫∫
T

| det[DΦ(u, v)]|dudv =

∫ 1

0

∫ u

0

4v dvdu

=

∫ 1

0

2u2 du

=
2

3
,

which is the same result as that obtained in part (c). �

6. Consider the iterated integral

∫ 1

0

∫ 1

x2

x
√

1− y2 dydx.

(a) Identify the region of integration, R, for this integral and sketch it.

Solution: The region R = {(x, y) ∈ R2 | x2 6 y 6 1, 0 6 x 6 1} is
sketched in Figure 3. �

(b) Change the order of integration in the iterated integral and evaluate the

double integral

∫
R

x
√

1− y2 dxdy.
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x

y

R
y = x2

Figure 3: Sketch of Region R

Solution: Compute∫∫
R

x
√

1− y2 dxdy =

∫ 1

0

∫ √y
0

x
√

1− y2 dxdy

=

∫ 1

0

[
x2

2

√
1− y2

]√y
0

dy

=

∫ 1

0

y

2

√
1− y2 dy.

Next, make the change of variables u = 1− y2 to obtain that∫∫
R

x
√

1− y2 dxdy = −1

4

∫ 0

1

√
u du

=
1

4

∫ 1

0

√
u du

=
1

6
.

�

7. What is the region R over which you integrate when evaluating the iterated
integral ∫ 2

1

∫ x

1

x√
x2 + y2

dy dx?

Rewrite this as an iterated integral first with respect to x, then with respect to
y. Evaluate this integral. Which order of integration is easier?
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x

y

R
�
�

�
�
�
�

y = x

Figure 4: Sketch of Region R

Solution: The region R = {(x, y) ∈ R2 | 1 6 y 6 x, 1 6 x 6 2} is sketched in
Figure 4. Interchanging the order of integration, we obtain that∫∫

R

x√
x2 + y2

dxdy =

∫ 2

1

∫ 2

y

x√
x2 + y2

dxdy. (19)

The iterated integral in (19) is easier to evaluate; in fact,∫∫
R

x√
x2 + y2

dxdy =

∫ 2

1

∫ 2

y

x√
x2 + y2

dxdy

=

∫ 2

1

[√
x2 + y2

]2
y
dy

=

∫ 2

1

[√
4 + y2 −

√
2 y
]
dy.

We therefore get that∫∫
R

x√
x2 + y2

dxdy =

∫ 2

1

√
4 + y2 dy −

√
2

∫ 2

1

y dy. (20)

Evaluating the second integral on the right–hand side of (20) yields∫ 2

1

y dy =
3

2
. (21)
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The first integral on the right–hand side of (20) leads to∫ 2

1

√
4 + y2 dy =

[
y

2

√
4 + y2 +

4

2
ln
∣∣∣y +

√
4 + y2

∣∣∣]2
1

,

which evaluates to∫ 2

1

√
4 + y2 dy = 2

√
2−
√

5

2
+ 2 ln

(
2 +
√

8

1 +
√

5

)
. (22)

Substituting (21) and (22) into (20) we obtain∫∫
R

x√
x2 + y2

dxdy =

√
2

2
−
√

5

2
+ 2 ln

(
2 +
√

8

1 +
√

5

)
.

�

8. Let f : R→ R denote a twice–differentiable real valued function and define

u(x, t) = f(x− ct) for all (x, t) ∈ R2,

where c is a real constant.

Verify that
∂2u

∂t2
= c2

∂2u

∂x2
.

Solution: Apply the Chain Rule to obtain

∂u

∂x
= f ′(x− ct) · ∂

∂x
(x− ct) = f ′(x− ct).

Similarly,
∂2u

∂x2
= f ′′(x− ct), (23)

∂u

∂t
= f ′(x− ct) · ∂

∂t
(x− ct) = −cf ′(x− ct),

and
∂2u

∂t2
= c2f ′′(x− ct). (24)

Combining (23) and (24) we see that

∂2u

∂t2
= c2f ′′(x− ct) = c2

∂2u

∂x2
,

which was to be verified. �
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9. Let f : R→ R denote a twice–differentiable real valued function and define

u(x, y) = f(r) where r =
√
x2 + y2 for all (x, y) ∈ R2.

(a) Define the vector field F (x, y) = ∇u(x, y). Express F in terms of f ′ and
r.

Solution: Compute

F (x, y) = ∇u(x, y) =
∂u

∂x
î+

∂u

∂y
ĵ, (25)

where, by the Chain Rule,

∂u

∂x
= f ′(r)

∂r

∂x
(26)

and
∂u

∂y
= f ′(r)

∂r

∂y
. (27)

In order to compute
∂r

∂x
and

∂r

∂x
, write

r2 = x2 + y2, (28)

and differentiate with respect to x on both sides of (28) to obtain

2r
∂r

∂x
= 2x,

from which we get

∂r

∂x
=
x

r
, for (x, y) 6= (0, 0). (29)

Similarly,
∂r

∂y
=
y

r
, for (x, y) 6= (0, 0). (30)

Substituting (29) into (26) yields

∂u

∂x
=
f ′(r)

r
x. (31)

Similarly, substituting (30) into (27) yields

∂u

∂y
=
f ′(r)

r
y. (32)
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Next, substitute (31) and (32) into (25) to obtain

F (x, y) =
f ′(r)

r
(x î+ y ĵ), (33)

�

(b) Recall that the divergence of a vector field F = P î+Q ĵ is the scalar field

given by divF =
∂P

∂x
+
∂Q

∂y
. Express the divergence of the gradient of u,

in terms of f ′, f ′′ and r.

The expression div(∇u) is called the Laplacian of u, and is denoted by ∆u
or ∇2u.

Solution: From (33) we obtain that

P (x, y) =
f ′(r)

r
x and Q(x, y) =

f ′(r)

r
y,

so that, applying the Product Rule, Chain Rule and Quotient Rule,

∂P

∂x
=

f ′(r)

r
+ x

d

dr

[
f ′(r)

r

]
∂r

∂x

=
f ′(r)

r
+ x

rf ′′(r)− f ′(r)
r2

x

r
,

(34)

where we have also used (29). Simplifying the expression in (34) yields

∂P

∂x
=

f ′(r)

r
+ x2

f ′′(r)

r2
− x2 f

′(r)

r3
. (35)

Similar calculations lead to

∂Q

∂y
=

f ′(r)

r
+ y2

f ′′(r)

r2
− y2 f

′(r)

r3
. (36)

Adding the results in (35) and (36), we then obtain that

divF =
∂P

∂x
+
∂Q

∂y

= 2
f ′(r)

r
+ r2

f ′′(r)

r2
− r2 f

′(r)

r3
,

(37)

where we have used (28). Simplifying the expression in (37), we get that

divF = f ′′(r) +
f ′(r)

r
.

�
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10. Let f(x, y) = 4x− 7y for all (x, y) ∈ R2, and g(x, y) = 2x2 + y2.

(a) Sketch the graph of the set C = g−1(1) = {(x, y) ∈ R2 | g(x, y) = 1}.
Solution: The curve C is the graph of the equation

x2

1/2
+ y2 = 1,

which is sketched in Figure 5. �
y

1

x1/
√

2

Figure 5: Sketch of ellipse

(b) Show that at the points where f has an extremum on C, the gradient of
f is parallel to the gradient of g.

Solution: Let σ : [0, 2π]→ R2 denote the C1 parametrization of C given
by

σ(t) =

(√
2

2
cos t, sin t

)
, for all t ∈ [0, 2π].

We then have that
g(σ(t)) = 1, for all t. (38)

Differentiating on both sides of (38) yields that

∇g(σ(t)) · σ′(t) = 0, for all t,
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where we have applied the Chain Rule, which shows that ∇g(x, y) is per-
pendicular to the tangent vector to C at (x, y).

Next, suppose that f(σ(t)) has a critical point at to. Then, the derivative
of f(σ(t)) at to is 0; that is,

∇f(σ(to)) · σ′(t0) = 0,

where we have applied the Chain Rule. It then follows that ∇f(xo, yo) is
perpendicular to the tangent vector to C at a critical point (xo, yo). Hence,
∇f(xo, yo) must be parallel to ∇g(xo, yo). �

(c) Find the largest and the smallest value of f on C.

Solution: By the result of part (b), at a critical point, (x, y), of f on C,
it must be the case that

∇g(x, y) = λ∇f(x, y), (39)

for some non–zero real number λ, where

∇f(x, y) = 4 î− 7 ĵ, (40)

and
∇g(x, y) = 4x î+ 2y ĵ. (41)

Substituting (40) and (41) into (39) yields the pair of equations

x = λ (42)

and
2y = −7λ. (43)

Substituting the expressions for x and y in (42) and (43), respectively, into
the equation of the ellipse

2x2 + y2 = 1,

yields that
57

4
λ2 = 1,

from which we get that

λ = ±2
√

57

57
. (44)
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The values for λ in (44), together with (42) and (43), yield the critical
points (

2
√

57

57
,−7
√

57

57

)
and

(
−2
√

57

57
,

7
√

57

57

)
. (45)

Evaluating the function f at each of the critical points in (45) we obtain
that

f

(
2
√

57

57
,−7
√

57

57

)
=
√

57 and f

(
−2
√

57

57
,

7
√

57

57

)
= −
√

57.

Consequently, the largest value of f on C is
√

57 and the smallest value is
−
√

57. �

11. Let ω be the differential 1–form in R3 given by ω = x dx+ y dy + z dz.

(a) Compute the differential, dω, of ω.

Solution: Compute dω = dx ∧ dx+ dy ∧ dy + dz ∧ dz = 0. �

(b) If possible, find a differential 0–form, f , such that ω = df .

Solution: Let f(x, y, z) =
x2

2
+
y2

2
+
z2

2
. Then,

df = x dx+ y dy + z dz = ω.

�

(c) Let C be parametrized by a C1 connecting Po(1,−1,−2) to P1(−1, 1, 2).

Compute the line integral

∫
C

ω.

Solution: Apply the Fundamental Theorem of Calculus,∫
C

ω =

∫
C

df = f(P1)− f(Po),

where f is as given in part (b). Consequently,∫
C

ω = f(−1, 1, 2)− f(1,−1,−2) = 3− 3 = 0.

�
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(d) Let C denote any simple closed curve in R3. Evaluate the line integral∫
C

ω.

Solution:

∫
C

ω = 0, since C is closed and ω is exact. �

12. Let f denote a differential 0–form in R3 and ω a a differential 1–form in R3.

(a) Verify that d(df) = 0.

Solution: Compute

d(df) = d

(
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

)

= d

(
∂f

∂x

)
∧ dx+ d

(
∂f

∂y

)
∧ dy + d

(
∂f

∂z

)
∧ dz

=
∂2f

∂x2
dx ∧ dx+

∂2f

∂y∂x
dy ∧ dx+

∂2f

∂z∂x
dz ∧ dx

+
∂2f

∂x∂y
dx ∧ dy +

∂2f

∂y2
dy ∧ dy +

∂2f

∂z∂y
dz ∧ dy

+
∂2f

∂x∂z
dx ∧ dz +

∂2f

∂y∂z
dy ∧ dz +

∂2f

∂z2
dz ∧ dz,

so that

d(df) =

(
∂2f

∂y∂z
− ∂2f

∂z∂y

)
dy ∧ dz

+

(
∂2f

∂z∂x
− ∂2f

∂x∂z

)
dz ∧ dx

+

(
∂2f

∂x∂y
− ∂2f

∂y∂x

)
dx ∧ dy.

(46)

It follows from (46) and the fact that the mixed second partial derivatives
of a C∞ function are equal that d(df) = 0. �

(b) Verify that d(dω) = 0.

Solution: Since ω is a differential 1–form, we may write

ω = f1 dx+ f2 dy + f3 dz,

where f1, f2 and f3 are differential 0–forms. Thus, since the operator d is
linear

d(dω) = d(df1) ∧ dx+ d(df2) ∧ dy + d(df3) ∧ dz,
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which is 0 since d(dfj) = 0, for j = 1, 2, 3, by the result from part (a).
Hence, d(dω) = 0, which was to be shown. �

13. Let f and g denote differential 0–forms in R3, and ω and η a differential 1–forms
in R3. Derive the following identities

(a) d(fg) = g df + f dg.

Solution: Compute

d(fg) =
∂(fg)

∂x
dx+

∂(fg)

∂y
dy +

∂(fg)

∂z
dz

=

(
f
∂g

∂x
+ g

∂f

∂x

)
dx

+

(
f
∂g

∂y
+ g

∂f

∂y

)
dy

+

(
f
∂g

∂z
+ g

∂f

∂z

)
dz,

(47)

where we have used the Product Rule. Rearranging terms in (47) we obtain
that

d(fg) = g

(
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

)

f

(
∂g

∂x
dx+

∂g

∂y
dy +

∂g

∂z
dz

)
= g df + f dg.

�

(b) d(fω) = df ∧ ω + f dω.

Solution: Write ω = g1 dx + g2 dy + g3 dz, where g1, g2 and g3 are
differential 0–forms. We then have that

fω = fg1 dx+ fg2 dy + fg3 dz,

so that
d(fω) = d(fg1) ∧ dx+ d(fg2) ∧ dy + d(fg3) ∧ dz. (48)
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Applying the result from part (a), we obtain from (48) that

d(fω) = (fdg1 + g1df) ∧ dx+ (fdg2 + g2df) ∧ dy

+(fdg3 + g3df) ∧ dz

= f dg1 ∧ dx+ g1 df ∧ dx

+f dg2 ∧ dy + g2 df ∧ dy

+f dg3 ∧ dz + g3 df ∧ dz

= f(dg1 ∧ dx+ dg2 ∧ dy + dg3 ∧ dz)

+df ∧ g1 dx+ df ∧ g2 dy + df ∧ g3 dz,

(49)

where we have used the bi–linearity of the wedge product. Using bi–
linearity again, we obtain from (49) that

d(fω) = f dω + df ∧ (g1 dx+ g2 dy + g3 dz)

= f dω + df ∧ ω,

which was to be shown. �

(c) d(ω ∧ η) = dω ∧ η − ω ∧ dη.

Solution: Write ω = f1 dx + f2 dy + f3 dz, where f1, f2 and f3 are
differential 0–forms, and compute

ω ∧ η = (f1 dx+ f2 dy + f3 dz) ∧ η

= f1 dx ∧ η + f2 dy ∧ η + f3 dz ∧ η,

so that

d(ω ∧ η) = d(f1 dx ∧ η) + d(f2 dy ∧ η) + d(f3 dz ∧ η). (50)

Using the result from part (b), we obtain from (50) that

d(ω ∧ η) = f1 d(dx ∧ η) + df1 ∧ dx ∧ η

+f2 d(dy ∧ η) + df2 ∧ dy ∧ η

+f3 d(dz ∧ η) + df3 ∧ dz ∧ η,

(51)
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where we have used the associativity of the wedge product. Next, write
η = g1 dx + g2 dy + g3 dz, where g1, g2 and g3 are differential 0–forms.
Then,

dx ∧ η = g2 dx ∧ dy + g3 dx ∧ dz,

so that

d(dx ∧ η) = dg2 ∧ dx ∧ dy + dg3 ∧ dx ∧ dz

=
∂g2
∂z

dz ∧ dx ∧ dy +
∂g3
∂y

dy ∧ dx ∧ dz

=

(
∂g2
∂z
− ∂g3

∂y

)
dx ∧ dy ∧ dz,

(52)

where we have used the anti–commutativity of the wedge product. On the
other hand, note that

dη = dg1 ∧ dx+ dg2 ∧ dy + dg3 ∧ dz

=

(
∂g1
∂x

dx+
∂g1
∂y

dy +
∂g1
∂z

dz

)
∧ dx

+

(
∂g2
∂x

dx+
∂g2
∂y

dy +
∂g2
∂z

dz

)
∧ dy

+

(
∂g3
∂x

dx+
∂g3
∂y

dy +
∂g3
∂z

dz

)
∧ dz,
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so that, using the anti–commutativity of the wedge product,

dη =
∂g1
∂y

dy ∧ dx+
∂g1
∂z

dz ∧ dx

+
∂g2
∂x

dx ∧ dy +
∂g2
∂z

dz ∧ dy

+
∂g3
∂x

dx ∧ dz +
∂g3
∂y

dy ∧ dz

=
∂g3
∂y

dy ∧ dz +
∂g2
∂z

dz ∧ dy

+
∂g3
∂x

dx ∧ dz +
∂g1
∂z

dz ∧ dx

+
∂g2
∂x

dx ∧ dy +
∂g1
∂y

dy ∧ dx

=

(
∂g3
∂y
− ∂g2

∂z

)
dy ∧ dz

+

(
∂g1
∂z
− ∂g3
∂x

)
dz ∧ dx

+

(
∂g2
∂x
− ∂g1

∂y

)
dx ∧ dy,

so that

dη =

(
∂g3
∂y
− ∂g2

∂z

)
dy ∧ dz

+

(
∂g1
∂z
− ∂g3
∂x

)
dz ∧ dx

+

(
∂g2
∂x
− ∂g1

∂y

)
dx ∧ dy,

(53)

Taking the wedge product with dx on the left of (53) yields

dx ∧ dη =

(
∂g3
∂y
− ∂g2

∂z

)
dx ∧ dy ∧ dz, (54)
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Comparison of (52) and (54) yields the identity

d(dx ∧ η) = −dx ∧ dη (55)

Similar calculations using (53) yield the additional identities

d(dy ∧ η) = −dy ∧ dη (56)

and
d(dz ∧ η) = −dz ∧ dη. (57)

Next, substitute the identities in (55), (56) and (57) into (51) to obtain

d(ω ∧ η) = −f1 (dx ∧ dη) + df1 ∧ dx ∧ η

−f2 (dy ∧ dη) + df2 ∧ dy ∧ η

−f3 (dz ∧ dη) + df3 ∧ dz ∧ η,

which leads to

d(ω ∧ η) = −(f1 dx+ f2 dy + f3 dz) ∧ dη)

+(df1 ∧ dx+ df2 ∧ dy + df3 ∧ dz) ∧ η,
(58)

by virtue of the bi–linearity of the wedge product. We therefore obtain
from (58) that

d(ω ∧ η) = −ω ∧ dη + dω ∧ η,

which was to be shown. �

14. Let R denote the square, R = {(x, y) ∈ R2 | 0 6 x 6 1, 0 6 y 6 1}, and ∂R
denote the boundary of R oriented in the counterclockwise sense. Evaluate the
line integral ∫

∂R

(y2 + x3) dx+ x4 dy.
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Solution: Apply the Fundamental Theorem of Calculus to get∫
∂R

(y2 + x3) dx+ x4 dy =

∫
R

d[(y2 + x3) dx+ x4 dy]

=

∫
R

2y dy + 3x2 dx) ∧ dx+ 4x3 dx ∧ dy

=

∫
R

2y dy ∧ dx+ 4x3 dx ∧ dy

=

∫
R

(4x3 − 2y) dx ∧ dy,

so that ∫
∂R

(y2 + x3) dx+ x4 dy =

∫∫
R

(4x3 − 2y) dxdy, (59)

since ∂R is oriented in the counterclockwise sense. Evaluating the double inte-
gral in (59) we obtain that∫

∂R

(y2 + x3) dx+ x4 dy =

∫ 1

0

∫ 1

0

(4x3 − 2y) dxdy

=

∫ 1

0

[
x4 − 2xy

]1
0
dy

=

∫ 1

0

(1− 2y)dy

=
[
y − y2

]1
0

= 0.

�


