Assignment \#15

Due on Wednesday March 26, 2008

Read Section 3.4 on Bivariate Distributions, pp. 118-126, in DeGroot and Schervish. Read Section 3.5 on Marginal Distributions, pp. 128-135, in DeGroot and Schervish. Do the following problems

1. Let $F_{(X, Y)}$ be the joint cdf of two random variables X and Y. For real constants $a<b, c<d$, show that

$$
\operatorname{Pr}(a<X \leqslant b, c<Y \leqslant d)=F_{(X, Y)}(b, d)-F_{(X, Y)}(b, c)-F_{(X, Y)}(a, d)+F_{(X, Y)}(a, c)
$$

Use this result to show that $F(x, y)=\left\{\begin{array}{ll}1 & \text { if } x+2 y \geqslant 1, \\ 0 & \text { otherwise },\end{array}\right.$ cannot be the joint cdf of two random variables.
2. Let $g(t)$ denote a non-negative, integrable function of a single variable with the property that

$$
\int_{0}^{\infty} g(t) \mathrm{d} t=1
$$

Define

$$
f(x, y)=\left\{\begin{array}{l}
\frac{2 g\left(\sqrt{x^{2}+y^{2}}\right)}{\pi \sqrt{x^{2}+y^{2}}} \quad \text { for } 0<x<\infty, 0<y<\infty \\
\text { 0otherwise. }
\end{array}\right.
$$

Show that $f(x, y)$ is a joint pdf for two random variables X and Y.
3. Let X and Y have joint pdf

$$
f_{(X, Y)}(x, y)= \begin{cases}e^{-x-y} & \text { for } 0<x<\infty, 0<y<\infty \\ 0 & \text { otherwise }\end{cases}
$$

Define $Z=X+Y$. Compute $\operatorname{Pr}(Z \leqslant z)$ for $0<z<\infty$ and give the pdf of Z.
4. Let X and Y have joint pdf

$$
f_{(X, Y)}(x, y)= \begin{cases}1 & \text { for } 0<x<1,0<y<1 \\ 0 & \text { otherwise }\end{cases}
$$

Find the cdf and pdf of the product $Z=X Y$.
5. Exercise 11 on page 136 in the text.

