Assignment #3

Due on Monday February 4, 2008

Read Section 1.5 on *The Definition of Probability*, pp. 12–18, in DeGroot and Schervish.

Do the following problems

- 1. Exercise 3 on page 18 in the text
- 2. Exercise 7 on page 18 in the text
- 3. Exercise 9 on page 18 in the text
- 4. Let A and B be elements in a σ -field \mathcal{B} on a sample space \mathcal{C} , and let Pr denote a probability function defined on \mathcal{B} . Recall that $A \setminus B = \{x \in A \mid x \notin B\}$. Prove that if $B \subseteq A$, then

$$\Pr(A \setminus B) = \Pr(A) - \Pr(B).$$

5. Let $(\mathcal{C}, \mathcal{B}, \Pr)$ denote a probability space, and B an event in \mathcal{B} with $\Pr(B) > 0$. Let

$$\mathcal{B}_B = \{ D \subset \mathcal{C} \mid D = E \cap B \text{ for some } E \in \mathcal{B} \}.$$

We have already seen that \mathcal{B}_B is a σ -field.

Let $P_B: \mathcal{B}_B \to \mathbb{R}$ be defined by $P_B(A) = \frac{\Pr(A)}{\Pr(B)}$ for all $A \in \mathcal{B}_B$. Verify that (B, \mathcal{B}_B, P_b) is a probability space; that is show that $P_B: \mathcal{B}_B \to \mathbb{R}$ is a probability function.