Assignment \#6

Due on Wednesday February 13, 2008
Read Section 2.1 on The Definition of Conditional Probability, pp. 49-18, in DeGroot and Schervish.
Read Section 2.2 on Independent Events, pp. 56-64, in DeGroot and Schervish.
Read Section 2.3 on Bayes' Theorem, pp. 66-77, in DeGroot and Schervish.
Do the following problems

1. Exercise 2 on page 77 in the text
2. Let $E_{1}, E_{2}, \ldots E_{k}$ be independent events with probabilities $p_{1}, p_{2}, \ldots, p_{k}$, respectively. Show that the probability of at least one of $E_{1}, E_{2}, \ldots E_{k}$ occurring is

$$
1-\left(1-p_{1}\right)\left(1-p_{2}\right) \cdots\left(1-p_{k}\right)
$$

3. Suppose a fair die is rolled six independent times. A match occurs if side i is observed in the i th trial, $i=1,2, \ldots, 6$.
(a) What is the probability of at least one match in the six rolls?
(b) Extend the result of part (a) to a fair n-sided die with n independent rolls. What is the limit of the probability as $n \rightarrow \infty$?
4. A die is cast independently until a 6 appears. If the casting stops on an odd number of times, Jane wins; otherwise, Bob wins.
(a) Assume the die is fair. What is the probability that Jane wins?
(b) Let p denote the probability of a 6. Show that the game favors Jane for all values of $p, 0<p<1$.
5. A person answers each of two multiple choice questions at random. If there are four possible choices on each question, what is the conditional probability that both answers are correct given that at least one is correct?
