Assignment \#8

Due on Wednesday February 20, 2008

Read Section 3.2 on Continuous Distributions, pp. 103-108, in DeGroot and Schervish.
Do the following problems

1. A point is selected at random form the sample space $\mathcal{C}=\{x \in \mathbb{R} \mid 0<x<10\}$. For any Borel subset $E \subseteq \mathcal{C}$ the probability of E is defined to be

$$
\operatorname{Pr}(E)=\int_{E} \frac{1}{10} \mathrm{~d} x
$$

Define $X: \mathcal{C} \rightarrow \mathbb{R}$ to be

$$
X(x)=x^{2} \quad \text { for all } x \in \mathcal{C}
$$

Find the cumulative distribution function and the probability density function of X.
2. Let $\mathcal{C}=\{x \in \mathbb{R} \mid 0<x<\infty\}$ and \mathcal{B} denote the Borel sets in \mathcal{C}. Let the pdf of a random variable, X, defined on \mathcal{C} be given by

$$
f_{X}(x)=e^{-x} \quad \text { for all } x>0 .
$$

Let $E_{k}=\{x \in \mathcal{C} \mid 2-1 / k<x \leqslant 3\}$ for $k=1,2,3, \ldots$
Compute $\operatorname{Pr}\left(E_{n}\right)$ for all n, and $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(E_{n}\right)$.
3. Exercise 2 on page 109 in the text
4. Exercise 4 on page 109 in the text
5. A median of the distribution of a random variable X is a value m for x such that

$$
\operatorname{Pr}(X<m) \leqslant \frac{1}{2} \quad \text { and } \quad \operatorname{Pr}(X \leqslant m) \geqslant \frac{1}{2}
$$

If there is only one such value m, it is called the median of the distribution. Suppose the pdf of a random variable X is given by the function

$$
f(x)= \begin{cases}\frac{1}{8} x & \text { for } 0 \leqslant x \leqslant 4 \\ 0 & \text { otherwise }\end{cases}
$$

Compute a median for the distribution of X. Is it the median of the distribution?

