Assignment #8

Due on Wednesday February 20, 2008

 $\textbf{Read} \ \textbf{Section 3.2} \ \textbf{on} \ \textit{Continuous Distributions}, \ \textbf{pp.} \ \ 103-108, \ \textbf{in DeGroot} \ \ \textbf{and Schervish}.$

Do the following problems

1. A point is selected at random form the sample space $C = \{x \in \mathbb{R} \mid 0 < x < 10\}$. For any Borel subset $E \subseteq C$ the probability of E is defined to be

$$\Pr(E) = \int_E \frac{1}{10} \, \mathrm{d}x.$$

Define $X: \mathcal{C} \to \mathbb{R}$ to be

$$X(x) = x^2$$
 for all $x \in \mathcal{C}$.

Find the cumulative distribution function and the probability density function of X.

2. Let $\mathcal{C} = \{x \in \mathbb{R} \mid 0 < x < \infty\}$ and \mathcal{B} denote the Borel sets in \mathcal{C} . Let the pdf of a random variable, X, defined on \mathcal{C} be given by

$$f_{x}(x) = e^{-x}$$
 for all $x > 0$.

Let
$$E_k = \{x \in \mathcal{C} \mid 2 - 1/k < x \leq 3\}$$
 for $k = 1, 2, 3, ...$

Compute $Pr(E_n)$ for all n, and $\lim_{n\to\infty} Pr(E_n)$.

- 3. Exercise 2 on page 109 in the text
- 4. Exercise 4 on page 109 in the text
- 5. A median of the distribution of a random variable X is a value m for x such that

$$\Pr(X < m) \leqslant \frac{1}{2}$$
 and $\Pr(X \leqslant m) \geqslant \frac{1}{2}$.

If there is only one such value m, it is called the median of the distribution.

Suppose the pdf of a random variable X is given by the function

$$f(x) = \begin{cases} \frac{1}{8}x & \text{for } 0 \le x \le 4, \\ 0 & \text{otherwise.} \end{cases}$$

Compute a median for the distribution of X. Is it <u>the</u> median of the distribution?