Solutions to Assignment \#9

1. Let $X \sim \operatorname{Uniform}(a, b)$ and compute $E(X)$.

Solution: Since $X \sim \operatorname{Uniform}(a, b)$, its pdf is given by

$$
f_{X}(x)= \begin{cases}\frac{1}{b-a} & \text { if } a<x<b \\ 0 & \text { otherwise }\end{cases}
$$

Thus,

$$
\begin{aligned}
E(X) & =\int_{-\infty}^{\infty} x f_{X}(x) \mathrm{d} x \\
& =\int_{a}^{b} \frac{x}{b-a} \mathrm{~d} x \\
& =\left[\frac{x^{2}}{2(b-a)}\right]_{a}^{b} \\
& =\frac{b^{2}-a^{2}}{2(b-a)} \\
& =\frac{(b+a)(b-a)}{2(b-a)} \\
& =\frac{b+a}{2}
\end{aligned}
$$

2. Let X be a continuous random variable with pdf

$$
f_{X}(x)=\frac{1}{\pi\left(x^{2}+1\right)} \text { where } x \in \mathbb{R}
$$

Show that X has no expectation.

Solution: Compute

$$
\begin{aligned}
\int_{-\infty}^{\infty}|x| f_{X}(x) \mathrm{d} x & =\int_{-\infty}^{\infty}|x| \frac{1}{\pi\left(x^{2}+1\right)} \mathrm{d} x \\
& =\frac{1}{\pi} \int_{0}^{\infty} \frac{2 x}{x^{2}+1} \mathrm{~d} x \\
& =\frac{1}{\pi} \lim _{b \rightarrow \infty} \int_{0}^{b} \frac{2 x}{x^{2}+1} \mathrm{~d} x \\
& =\frac{1}{\pi} \lim _{b \rightarrow \infty}\left[\ln \left(x^{2}+1\right)\right]_{0}^{b} \\
& =\frac{1}{\pi} \lim _{b \rightarrow \infty} \ln \left(b^{2}+1\right)=\infty
\end{aligned}
$$

Thus, the condition that

$$
\int_{-\infty}^{\infty}|x| f_{X}(x) \mathrm{d} x<\infty
$$

is not fulfilled and therefore the expected value of X does not exist.
3. Suppose that X is a bounded and continuous random variable; that is, there exists a positive number M such that

$$
\operatorname{Pr}(|X| \leqslant M)=1
$$

Show that $E(X)$ exists. In other words, show that

$$
\int_{-\infty}^{\infty}|x| f_{X}(x) \mathrm{d} x<\infty
$$

Solution: If $\operatorname{Pr}(|X| \leqslant M)=1$, then $\operatorname{Pr}(|X|>M)=0$ and therefore

$$
\int_{-\infty}^{-M} f_{X}(x) \mathrm{d} x=0 \quad \text { and } \quad \int_{M}^{\infty} f_{X}(x) \mathrm{d} x=0
$$

It then follows that

$$
\int_{-\infty}^{-M}|x| f_{X}(x) \mathrm{d} x=0 \quad \text { and } \quad \int_{M}^{\infty}|x| f_{X}(x) \mathrm{d} x=0
$$

and therefore

$$
\begin{aligned}
\int_{-\infty}^{\infty}|x| f_{X}(x) \mathrm{d} x & =\int_{-M}^{M}|x| f_{X}(x) \mathrm{d} x \\
& \leqslant M \int_{-M}^{M} f_{X}(x) \mathrm{d} x=M \operatorname{Pr}(|X| \leqslant M)=M<\infty
\end{aligned}
$$

4. [Exercise 7 on page 188 in the text]

Suppose a random variable X has a uniform distribution on the interval $[0,1]$. Show that the expectation of $1 / X$ does not exist.

Solution: Since $X \sim \operatorname{Uniform}(0,1)$, its pdf is given by

$$
f_{X}(x)= \begin{cases}1 & \text { if } 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

Put $Y=1 / Y$. We want to show that $E(Y)$ does not exist; that is, the integral

$$
\int_{-\infty}^{\infty}|y| f_{Y}(y) \mathrm{d} y
$$

does not converge. To do this, we need to compute $f_{Y}(y)$ for $y>1$. To find $f_{Y}(y)$, we first determine the cdf of Y :

$$
\begin{aligned}
F_{Y}(y) & =\operatorname{Pr}(Y \leqslant y), \quad \text { for } 1<y<\infty \\
& =\operatorname{Pr}(1 / X \leqslant y) \\
& =\operatorname{Pr}(X \geqslant 1 / y) \\
& =\operatorname{Pr}(X 1 / y) \\
& =1-\operatorname{Pr}(X \leqslant 1 / y) \\
& =1-F_{X}(1 / y)
\end{aligned}
$$

Differentiating with respect to y we then obtain

$$
\begin{aligned}
f_{Y}(y) & =\frac{d}{d y} F_{Y}(y), \quad \text { for } 1<y<\infty \\
& =\frac{d}{d y}\left(1-F_{X}(1 / y)\right) \\
& =-F_{X}^{\prime}(1 / y) \frac{d}{d y}(1 / y) \\
& =f_{X}(1 / y) \frac{1}{y^{2}}
\end{aligned}
$$

We then have that

$$
f_{Y}(y)= \begin{cases}\frac{1}{y^{2}} & \text { if } 1<y<\infty \\ 0 & \text { if } y \leqslant 1\end{cases}
$$

Next, compute

$$
\begin{aligned}
\int_{-\infty}^{\infty}|y| f_{Y}(y) \mathrm{d} y & =\int_{1}^{\infty}|y| \frac{1}{y^{2}} \mathrm{~d} y \\
& =\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{y} \mathrm{~d} y \\
& =\lim _{b \rightarrow \infty} \ln b=\infty
\end{aligned}
$$

Thus,

$$
\int_{-\infty}^{\infty}|y| f_{Y}(y) \mathrm{d} y=\infty
$$

Consequently, $Y=1 / X$ has no expectation.
5. [Exercise 9 on page 189 in the text]

Suppose that a point is chosen at random on a stick of unit length at that the stick is broken into two pieces at that point. Find the expected value of the length of the longer piece.

Solution: Let X denote the coordinate of the dividing point in the interval $(0,1)$. Then, $X \sim \operatorname{Uniform}(0,1)$ and therefore its pdf is

$$
f_{X}(x)= \begin{cases}1 & \text { if } 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

Next, define $Y=\max \{X, 1-X\}$ so that

$$
Y= \begin{cases}1-X & \text { if } 0<X<1 / 2 \\ X & \text { if } 1 / 2 \leqslant X<1\end{cases}
$$

It then follows that Y takes on value between $1 / 2$ and 1 . Observe also that

$$
Y=\frac{1+|2 X-1|}{2}
$$

To compute the expected value of Y, we first need to find the pdf of Y.

$$
\begin{aligned}
F_{Y}(y) & =\operatorname{Pr}(Y \leqslant y), \quad \text { for } 1 / 2<y<1, \\
& =\operatorname{Pr}\left(\frac{1+|2 X-1|}{2} \leqslant y\right) \\
& =\operatorname{Pr}(|2 X-1| \leqslant 2 y-1) \\
& =\operatorname{Pr}(-2 y+1 \leqslant 2 X-1 \leqslant 2 y-1) \\
& =\operatorname{Pr}(1-y \leqslant X \leqslant y) \\
& =\operatorname{Pr}(1-y<X \leqslant y) \\
& =F_{X}(y)-F_{X}(1-y) .
\end{aligned}
$$

Differentiating with respect to y, we obtain

$$
f_{Y}(y)=f_{X}(y)+f_{X}(1-y), \quad \text { for } \quad 1 / 2<y<1
$$

It then follows that

$$
f_{Y}(y)= \begin{cases}2 & \text { if } 1 / 2<y<1 \\ 0 & \text { otherwise }\end{cases}
$$

that is, $Y \sim \operatorname{Uniform}(1 / 2,1)$. It then follows from Problem (1) in this assignment that

$$
E(Y)=\frac{1 / 2+1}{2}=\frac{3}{4}
$$

