Assignment \#3

Due on Wednesday, February 18, 2009
Read Section 7.1 on Limits, pp. 171-178, in Bressoud.

Background and Definitions

- (Open Set) A subset, U, of \mathbb{R}^{n} is said to be open if for any $x \in U$ there exists a positive number r such that $B_{r}(x)=\left\{y \in \mathbb{R}^{n} \mid\|y-x\|<r\right\}$ is entirely contained in U.
(The empty set, \emptyset, is considered to be an open set.)
- (Continuous Function) Let U denote an open subset of \mathbb{R}^{n}. A function $F: U \rightarrow$ \mathbb{R}^{m} is said to be continuous at $x \in U$ if and only if $\lim _{\|y-x\| \rightarrow 0}\|F(y)-F(x)\|=0$.
- (Image) If $A \subseteq U$, the image of A under the map $F: U \rightarrow \mathbb{R}^{m}$, denoted by $F(A)$, is defined as the set $F(A)=\left\{y \in \mathbb{R}^{m} \mid y=F(x)\right.$ for some $\left.x \in A\right\}$.
- (Pre-image) If $B \subseteq \mathbb{R}^{m}$, the pre-image of B under the map $F: U \rightarrow \mathbb{R}^{m}$, denoted by $F^{-1}(B)$, is defined as the set $F^{-1}(B)=\{x \in U \mid F(x) \in B\}$.
Note that $F^{-1}(B)$ is always defined even if F does not have an inverse map.

Do the following problems

1. Let U_{1} and U_{2} denote subsets in \mathbb{R}^{n}.
(a) Show that if U_{1} and U_{2} are open subsets of \mathbb{R}^{n}, then their intersection

$$
U_{1} \cap U_{2}=\left\{y \in \mathbb{R}^{n} \mid y \in U_{1} \text { and } y \in U_{2}\right\}
$$

is also open.
(b) Show that the set $\left\{\left.\binom{x}{y} \in \mathbb{R}^{2} \right\rvert\, y=0\right\}$ is not an open subset of \mathbb{R}^{2}.
2. In Problem 4 of Assignment $\# 2$ you proved that every linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}$ must be of the form

$$
T(v)=w \cdot v \quad \text { for every } \quad v \in \mathbb{R}^{n}
$$

Use this fact together with the Cauchy-Schwarz inequality to prove that T is continuous at every point in \mathbb{R}^{n}.
3. A subset, U, of \mathbb{R}^{n} is said to be convex if given any two points x and y in U, the straight line segment connecting them is entirely contained in U; in symbols,

$$
\left\{x+t(y-x) \in \mathbb{R}^{n} \mid 0 \leq t \leqslant 1\right\} \subseteq U
$$

(a) Prove that the ball $B_{r}(O)=\left\{x \in \mathbb{R}^{n} \mid\|x\|<R\right\}$ is a convex subset of \mathbb{R}^{n}.
(b) Prove that the "punctured unit disc" in \mathbb{R}^{2},

$$
\left\{\left.\binom{x}{y} \in \mathbb{R}^{2} \right\rvert\, 0<x^{2}+y^{2}<1\right\}
$$

is not a convex set.
4. Let x and y denote real numbers.
(a) Starting with the self-evident inequality: $(|x|-|y|)^{2} \geqslant 0$, derive the inequality

$$
|x y| \leqslant \frac{1}{2}\left(x^{2}+y^{2}\right) .
$$

(b) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)= \begin{cases}\frac{x y}{\sqrt{x^{2}+y^{2}}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0),\end{cases}
$$

Use the inequality derived in the previous part to prove that f is continuous at the origin.
5. Exercise 10 on page 180 in the text.
6. Use the triangle inequality to prove that, for any x and y in \mathbb{R}^{n},

$$
|\|y\|-\|x\|| \leqslant\|y-x\| .
$$

Use this inequality to deduce that the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by

$$
f(x)=\|x\| \quad \text { for all } x \in \mathbb{R}^{n}
$$

is continuous on \mathbb{R}^{n}.
7. Let $f(x, y)$ and $g(x, y)$ denote two functions defined on a open region, D, in \mathbb{R}^{2}. Prove that the vector field $F: D \rightarrow \mathbb{R}^{2}$, defined by

$$
F\binom{x}{y}=\binom{f(x, y)}{g(x, y)} \quad \text { for all } \quad\binom{x}{y} \in \mathbb{R}^{2}
$$

is continuous on D if and only f and g are both continuous on D.
8. Let U denote an open subset of \mathbb{R}^{n} and let $F: U \rightarrow \mathbb{R}^{m}$ and $G: U \rightarrow \mathbb{R}^{m}$ be two given functions.
(a) Explain how the sum $F+G$ is defined.
(b) Prove that if both F and G are continuous on U, then their sum is also continuous.
(Suggestion: The triangle inequality might come in handy.)
9. In each of the following, given the function $F: U \rightarrow \mathbb{R}^{m}$ and the set B, compute the pre-image $F^{-1}(B)$.
(a) $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, F\binom{x}{y}=\binom{x^{2}+y^{2}}{x^{2}-y^{2}}$, and $B=\left\{\binom{1}{0}\right\}$.
(b) $f: D^{\prime} \rightarrow \mathbb{R}$,

$$
f(x, y)=\frac{1}{\sqrt{1-x^{2}-y^{2}}}, \quad \text { for }(x, y) \in D^{\prime}
$$

where $D^{\prime}=\left\{(x, y) \in \mathbb{R}^{2} \mid 0<x^{2}+y^{2}<1\right\}$ (the punctured unit disc), $B=\{1\}$.
(c) $f: D^{\prime} \rightarrow \mathbb{R}$ is as in part (b), and $B=\{2\}$.
(d) $f: D^{\prime} \rightarrow \mathbb{R}$ is as in part (b), and $B=\{1 / 2\}$.
10. Compute the image the given sets under the following maps
(a) $\sigma: \mathbb{R} \rightarrow \mathbb{R}^{2}, \sigma(t)=(\cos t, \sin t)$ for all $t \in \mathbb{R}$. Compute $\sigma(\mathbb{R})$.
(b) $f: D^{\prime} \rightarrow \mathbb{R}$ and D^{\prime} are as given in part (b) of the previous problem. Compute $f\left(D^{\prime}\right)$.

