Assignment \#5

Due on Wednesday, March 4, 2009
Read Section 7.4 on The Derivative, pp. 187-197, in Bressoud.
Do the following problems

1. Let f denote a real valued function defined on some open interval around $a \in \mathbb{R}$. Consider a line of slope m and equation

$$
L(x)=f(a)+m(x-a) \text { for all } x \in \mathbb{R}
$$

Suppose that this line if the best approximation to the function f at a in the sense that

$$
\lim _{x \rightarrow a} \frac{|E(x)|}{|x-a|}=0
$$

where $E(x)=f(x)-L(x)$ for all x in the interval in which f is defined. Prove that f is differentiable at a, and that $f^{\prime}(a)=m$.
2. Recall that a function $F: U \rightarrow \mathbb{R}^{m}$, where U is an open subset for \mathbb{R}^{n}, is said to be differentiable at $x \in U$ if and only if there exists a unique linear transformation $T_{x}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that

$$
\lim _{\|y-x\| \rightarrow 0} \frac{\left\|F(y)-F(x)-T_{x}(y-x)\right\|}{\|y-x\|}=0 .
$$

Prove that if F is differentiable at x, then it is also continuous at x. Give an example that shows that the converse of this assertion is not true
3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=\sqrt{|x y|}$ for all $(x, y) \in \mathbb{R}^{2}$. Show that f is not differentiable at $(0,0)$.
4. Exercise 4 on page 197 in the text.
5. Exercise 6 on page 197 in the text.
6. Exercises 7(a) and 7(b) on pages 197 and 198 in the text.
7. Exercise 7(c) on page 198 in the text.
8. Exercise 8 on page 198 in the text.
9. Exercise 14 on pages 198 and 199 in the text.
10. A set $U \subseteq \mathbb{R}^{n}$ is said to be path connected iff for any pair of vectors x and y in U, there exists a differentiable path $\sigma:[0,1] \rightarrow \mathbb{R}^{n}$ such that $\sigma(0)=x$, $\sigma(1)=y$ and $\sigma(t) \in U$ for all $t \in[0,1]$; that is, any two elements in U can be connected by a differentiable path whose image is entirely contained in U.
(a) Prove that the ball $B_{R}(O)=\left\{x \in \mathbb{R}^{n} \mid\|x\|<R\right\}$ is path connected.
(b) Give and example in \mathbb{R}^{2} of a set which is not path connected.

