Assignment #6

Due on Wednesday, April 1, 2009

Read Section 7.4 on The Derivative, pp. 187–197, in Bressoud.

Read Section 7.6 on *The Chain Rule*, pp. 201–205, in Bressoud.

Do the following problems

- 1. Let I be and open interval of real numbers, and suppose that $\sigma \colon I \to \mathbb{R}^n$ is a differentiable path satisfying $\sigma(t) \neq \mathbf{0}$ for all $t \in I$. Show that the function $g \colon I \to \mathbb{R}$ defined by $g(t) = \|\sigma(t)\|$ for all $t \in I$ is differentiable on I and compute its derivative.
- 2. Recall that a set $U \subseteq \mathbb{R}^n$ is said to be **path connected** iff for any vectors x and y in U, there exists a differentiable path $\sigma \colon [0,1] \to \mathbb{R}^n$ such that $\sigma(0) = x$, $\sigma(1) = y$ and $\sigma(t) \in U$ for all $t \in [0,1]$; i.e., any two elements in U can be connected by a differentiable path whose image is entirely contained in U. Suppose that U is an open, path connected subset of \mathbb{R}^n . Let $f \colon U \to \mathbb{R}$ be a differentiable scalar field such that $\nabla f(x)$ is the zero vector for all $x \in U$. Prove that f must be constant.
- 3. Let I be an open interval of real numbers and U be an open subset of \mathbb{R}^n . Suppose that $\sigma\colon I\to\mathbb{R}^n$ is a differentiable path and that $f\colon U\to\mathbb{R}$ is a differentiable scalar field. Assume also that the image of I under σ , $\sigma(I)$, is contained in U. Suppose also that the derivative of the path σ satisfies

$$\sigma'(t) = -\nabla f(\sigma(t))$$
 for all $t \in I$.

Show that if the gradient of f along the path σ is never zero, then f decreases along the path as t increases.

Suggestion: Use the Chain Rule to compute the derivative of $f(\sigma(t))$.

- 4. Exercises 2 and 4 on page 207 in the text.
- 5. Exercise 6 on page 208 in the text.
- 6. Exercise 8 on page 208 in the text.

7. Let D denote an open region in \mathbb{R}^2 and $f: D \to \mathbb{R}$ be a C^2 scalar field on D. The Jacobian of the gradient map $\nabla f: \mathbb{R}^2 \to \mathbb{R}^2$ is called the *Hessian* of the function f and is denoted by H_f ; that is $H_f(x,y) = J_{\nabla f}(x,y)$.

Compute the Hessian for the following scalar fields in \mathbb{R}^2 .

- (a) $f(x,y) = x^2 y^2$ for all $(x,y) \in \mathbb{R}^2$.
- (b) f(x,y) = xy for all $(x,y) \in \mathbb{R}^2$.
- 8. Let A denote a symmetric $n \times n$ matrix; recall that this means that $A^T = A$, where A^T denotes the transpose of A. Define $f: \mathbb{R}^n \to \mathbb{R}$ by $f(x) = \frac{1}{2}(Ax) \cdot x$ for all $x \in \mathbb{R}^n$; that is, f(x) is the dot-product of Ax and x. In terms of matrix product,

$$f(x) = \frac{1}{2} (Ax)^T x$$
 for all $x \in \mathbb{R}^n$,

where x is expressed as a column vector.

- (a) Show that f is differentiable and compute the gradient map ∇f .
- (b) Show that the gradient map ∇f is differentiable, and compute its derivative.
- 9. Let U be an open subset of \mathbb{R}^n and I be an open interval. Suppose that $f: U \to \mathbb{R}$ is a differentiable scalar field and $\sigma: I \to \mathbb{R}^n$ be a differentiable path whose image lies in U. Suppose also that $\sigma'(t)$ is never the zero vector. Show that if f has a local maximum or a local minimum at some point on the path, then ∇f is perpendicular to the path at that point.

Suggestion: Consider the real valued function of a single variable $g(t) = f(\sigma(t))$ for all $t \in I$.

10. Let $\sigma: [a,b] \to \mathbb{R}^n$ be a differentiable, one–to–one path. Suppose also that $\sigma'(t)$, is never the zero vector. Let $h: [c,d] \to [a,b]$ be a one–to–one and onto map such that $h'(t) \neq 0$ for all $t \in [c,d]$. Define

$$\gamma(t) = \sigma(h(t))$$
 for all $t \in [c, d]$.

 $\gamma \colon [c,d] \to \mathbb{R}^n$ is a called a reparametrization of σ

- (a) Show that γ is a differentiable, one–to–one path.
- (b) Compute $\gamma'(t)$ and show that it is never the zero vector.
- (c) Show that σ and γ have the same image in \mathbb{R}^n .