Assignment \#7

Due on Wednesday, April 8, 2009
Read Section 3.1 on The Calculus of Curves, pp. 53-65, in Bressoud.
Read Section 5.2 on Line Integrals, pp. 113-119, in Bressoud.
Do the following problems

1. Let I denote an open interval in \mathbb{R}, and $\sigma: I \rightarrow \mathbb{R}^{n}$ be a C^{1} path. For fixed $a \in I$, define

$$
s(t)=\int_{a}^{t}\left\|\sigma^{\prime}(\tau)\right\| \mathrm{d} \tau \quad \text { for all } t \in I
$$

Show that s is differentiable and compute $s^{\prime}(t)$ for all $t \in I$.
2. Let σ and s be as defined in the previous problem. Suppose, in addition, that $\sigma^{\prime}(t)$ is never the zero vector for all t in I. Show that s is a strictly increasing function of t and that it is, therefore, one-to-one.
3. Let σ and s be as defined in Problem 1. We can re-parameterize σ by using s as a parameter. We therefore obtain $\sigma(s)$, where s is the arc length parameter.
Differentiate the expression

$$
\sigma(s(t))=\sigma(t)
$$

with respect to t using the Chain Rule. Conclude that, if $\sigma^{\prime}(t)$ is never the zero vector for all t in I, then $\sigma^{\prime}(s)$ is always a unit vector.
The vector $\sigma^{\prime}(s)$ is called the unit tangent vector to the path σ.
4. For a and b, positive real numbers, the expression

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

defines an ellipse in the $x y$-plane \mathbb{R}^{2}.
Sketch the ellipse, give a parametrization for it, and set up the integral that yields its arc length.
5. Let $\sigma:[0, \pi] \rightarrow \mathbb{R}^{3}$ be defined by $\sigma(t)=t \widehat{i}+t \sin t \widehat{j}+t \cos t \widehat{k}$ for all $t \in[0, \pi]$. Compute the arc length of the curve parametrized by σ.
6. Consider a portion of a helix, C, parametrized by the path

$$
\sigma(t)=(\cos t, t, \sin t) \quad \text { for } \quad 0 \leqslant t \leqslant \pi
$$

Let $f(x, y, z)=x^{2}+y^{2}+z^{2}$ for all $(x, y, z) \in \mathbb{R}^{3}$. Evaluate $\int_{C} f$.
7. Let $f(x, y)=y$ for all $(x, y) \in \mathbb{R}^{2}$. For each of the following curves, C, in the plane, evaluate $\int_{C} f$.
(a) C is the segment along the x axis from $(0,0)$ to $(1,0)$.
(b) C is the segment along the y axis from $(0,0)$ to $(0,1)$.
(c) C is the unit circle in \mathbb{R}^{2}.
8. Exercise 10 on page 120 in the text.
9. Exercise 12 on page 120 in the text.
10. Let f be a real valued function which is C^{1} in an open interval containing the closed an bounded interval $[a, b]$. Define C to be the portion of the graph of f over $[a, b]$; that is,

$$
C=\left\{(x, y) \in \mathbb{R}^{2} \mid y=f(x), a \leqslant x \leqslant b\right\} .
$$

(a) Give a parametrization for C and compute the arc length, $\ell(C)$, of C.
(b) Compute the arc length along the graph of $y=\ln x$ from $x=1$ to $x=2$. Note: In order to do part (b), you'll need to remember, or review, everything you learned about evaluating integrals in your single variable Calculus courses.

