Assignment \#8

Due on Wednesday, April 15, 2009
Read Section 3.1 on The Calculus of Curves, pp. 53-65, in Bressoud.
Read Section 5.2 on Line Integrals, pp. 113-119, in Bressoud.
Do the following problems

1. Consider a portion of a helix, C, parametrized by the path

$$
\sigma(t)=(\cos t, t, \sin t) \quad \text { for } 0 \leqslant t \leqslant \pi
$$

Let $F(x, y, z)=x \widehat{i}+y \widehat{j}+z \widehat{k}$, for all $(x, y, z) \in \mathbb{R}^{3}$, be a vector field in \mathbb{R}^{3}. Evaluate the line integral $\int_{C} F \cdot T$; that is, the integral of the tangential component of the field F along the curve C.
2. Evaluate

$$
\int_{C} y z \mathrm{~d} x+x z \mathrm{~d} y+x y \mathrm{~d} z
$$

where C is the directed line segment from the point $(1,1,0)$ to the point $(3,2,1)$ in \mathbb{R}^{3}.
3. Exercises $1(\mathrm{a})(\mathrm{b})(\mathrm{c})$ on page 119 in the text.
4. Exercises $1(\mathrm{~d})(\mathrm{e})(\mathrm{f})$ on page 119 in the text.
5. Let $f: U \rightarrow \mathbb{R}$ be a C^{1} scalar field defined on an open subset U of \mathbb{R}^{n}. Define the vector field $F: U \rightarrow \mathbb{R}^{n}$ by $F(x)=\nabla f(x)$ for all $x \in U$. Suppose that C is a C^{1} simple curve in U connecting the point x to the point y in U. Show that

$$
\int_{C} F \cdot T=f(y)-f(x)
$$

Conclude therefore that the line integral of F along a path from x to y in U is independent of the path connecting x to y. The field F is called a gradient field.
6. Exercise 4 on page 119 in the text.
7. Exercises $6(\mathrm{~d})(\mathrm{e})(\mathrm{f})$ on pages 119 and 120 in the text.
8. Let $\sigma:[a, b] \rightarrow \mathbb{R}^{n}$ be a C^{1} parametrization of a curve C in \mathbb{R}^{n}. Let $h:[c, d] \rightarrow$ $[a, b]$ be a one-to-one and onto map such that $h^{\prime}(t)>0$ for all $t \in[c, d]$. Define

$$
\gamma(t)=\sigma(h(t)) \quad \text { for all } t \in[c, d] .
$$

$\gamma:[c, d] \rightarrow \mathbb{R}^{n}$ is a called a reparametrization of σ.
Let $F: U \rightarrow \mathbb{R}^{n}$ denote a continuous vector field defined on a region U of \mathbb{R}^{n} which contains the curve C. Show that

$$
\int_{a}^{b} F(\sigma(\tau)) \cdot \sigma^{\prime}(\tau) \mathrm{d} \tau=\int_{c}^{d} F(\gamma(t)) \cdot \gamma^{\prime}(t) \mathrm{d} t
$$

Thus, the line integral

$$
\int_{C} F \cdot T \mathrm{~d} s
$$

is independent of reparametrization.
9. Let $\sigma:[0,1] \rightarrow \mathbb{R}^{n}$ be a C^{1} parametrization of a curve C is \mathbb{R}^{n}. Give a C^{1} reparametrization, $\gamma:[0,1] \rightarrow \mathbb{R}^{n}$, of σ in which the curve C is traversed in the opposite direction as that of σ. What is γ^{\prime} in terms of σ^{\prime} ?
10. Recall that the flux of a 2 -dimensional vector field,

$$
F(x, y)=P(x, y) \widehat{i}+Q(x, y) \widehat{j}
$$

across a simple, C^{1}, closed curve, C, is given by

$$
\int_{C} P \mathrm{~d} y-Q \mathrm{~d} x
$$

Compute the flux of the following fields across the given curves
(a) $F(x, y)=x^{2} \widehat{i}+y^{2} \widehat{j}$ and C is the boundary of the square with vertices $(0,0),(1,0),(1,1)$ and $(0,1)$.
(b) $F(x, y)=x \widehat{i}+y \widehat{j}$ and C is the boundary of the unit circle

