Assignment \#9

Due on Wednesday, April 22, 2009
Read Chapter 4 on Differential Forms, pp. 77-110, in Bressoud.
Read Section 5.4 on Multiple Integrals, pp. 120-134, in Bressoud.
Do the following problems

1. Exercise 2 on page 86 in the text.
2. Exercises 3 and 4 on pages 86 and 87 in the text.
3. Exercises 1(b) and 1(d) on page 96 in the text.
4. Show that the directed line segment $\left[P_{1}, P_{2}\right]$ is the smallest convex set that contains the points P_{1} and P_{2} in \mathbb{R}^{2}; that is, if A is any convex set in \mathbb{R}^{2} which contains the points P_{1} and P_{2}, then

$$
\left[P_{1}, P_{2}\right] \subseteq A
$$

5. Let P_{1}, P_{2} and P_{3} be three non-collinear points in \mathbb{R}^{2}. Show that the oriented triangle $T=\left[P_{1}, P_{2}, P_{3}\right]$ is the set

$$
T=\left\{\alpha \overrightarrow{O P_{1}}+\beta \overrightarrow{O P_{2}}+\gamma \overrightarrow{O P_{3}} \mid \alpha \geqslant 0, \beta \geqslant 0, \gamma \geqslant 0, \text { and } \alpha+\beta+\gamma=1\right\}
$$

where O denotes the origin in \mathbb{R}^{2}. The expression

$$
\alpha \overrightarrow{O P_{1}}+\beta \overrightarrow{O P_{2}}+\gamma \overrightarrow{O P_{3}}
$$

where α, β and γ are positive real numbers which add up to 1 is called a convex combination of the vectors $\overrightarrow{O P_{1}}, \overrightarrow{O P_{2}}$ and $\overrightarrow{O P_{3}}$.
6. Let P and Q denote C^{1} scalar fields defined in some open region, D, or \mathbb{R}^{2}, and define the 1 -form

$$
\omega=P \mathrm{~d} y-Q \mathrm{~d} x
$$

(a) Compute the differential, $\mathrm{d} \omega$, of ω.
(b) Recall that the integral $\int_{C} \omega$, where C is a simple closed curve in D, gives the flux of the field

$$
F=P \widehat{i}+Q \widehat{j}
$$

across the curve C.
What does the Fundamental Theorem of Calculus,

$$
\int_{T} \mathrm{~d} \omega=\int_{\partial T} \omega
$$

where T is a positively oriented triangle in D, say about the divergence of F and its flux across the boundary of T ?
7. Consider the iterated integral

$$
\int_{0}^{1} \int_{y}^{1} e^{-x^{2}} \mathrm{~d} x \mathrm{~d} y
$$

(a) Identify the region of integration, R, for this integral and sketch it.
(b) Change the order of integration in the iterated integral and evaluate the double integral

$$
\int_{R} e^{-x^{2}} \mathrm{~d} x \mathrm{~d} y
$$

8. Exercise 2 on page 135 in the text.
9. Exercise 3 on page 135 in the text.
10. Exercise 4 on page 135 in the text.
