Exam 1

March 11, 2007
Name: \qquad
This is a closed book exam. Show all significant work and justify all your answers. Use your own paper and/or the paper provided by the instructor. You have 75 minutes to work on the following 5 problems. Relax.

1. The points $P(1,0,0), Q(0,2,0)$ and $R(0,0,3)$ determine a unique plane in three dimensional Euclidean space, \mathbb{R}^{3}.
(a) Give the equation of the plane determined by P, Q and R.
(b) Give the parametric equations of the line through the origin in \mathbb{R}^{3} which is perpendicular to the plane determined by P, Q and R.
(c) Find the intersection between the line found in part (b) above and the plane determined by P, Q and R.
(d) Find the (shortest) distance from the origin in \mathbb{R}^{3} to the plane determined by P, Q and R.
2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ denote the scalar field on \mathbb{R}^{2} defined by

$$
f(x, y)=\sqrt{|x y|} \quad \text { for all } \quad(x, y) \in \mathbb{R}^{2} .
$$

(a) Use the inequality $a b \leqslant \frac{1}{2}\left(a^{2}+b^{2}\right)$, for all nonnegative real numbers a and b, and the Squeeze Theorem to prove that f is continuous at $(0,0)$.
(b) Show that the partial derivatives of f at $(0,0)$ exist and compute them.
(c) Show that f is not differentiable at $(0,0)$.
3. Let U denote an open subset of \mathbb{R}^{n}, and let $F: U \rightarrow \mathbb{R}^{m}$ be a vector field on U.
(a) State precisely what it means for F to be differentiable at $u \in U$.
(b) Suppose that a vector field $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear map. Prove that F is differentiable at every $u \in U$, and compute its derivative map,

$$
D F(u): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

at u, for all $u \in \mathbb{R}^{n}$.
4. Let U denote an open subset of \mathbb{R}^{n}, and let $f: U \rightarrow \mathbb{R}$ denote a scalar field on U. Let \widehat{u} denote a unit vector in \mathbb{R}^{n}.
(a) Prove that if f is differentiable at $v \in U$, then the limit

$$
\lim _{t \rightarrow 0} \frac{f(v+t \widehat{u})-f(v)}{t}
$$

exists and is given by the component of the orthogonal projection of the gradient of f at $v, \nabla f(v)$, onto the direction of \widehat{u}.
(b) Denote the limit obtained in part (a) by $D_{\widehat{u}} f(v)$. Give an interpretation for $D_{\widehat{u}} f(v)$.
(c) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $f(x, y)=3 x y-y^{2}$ for all $(x, y) \in \mathbb{R}^{2}$. Compute $D_{\widehat{u}} f(2,1)$ where $\widehat{u}=\frac{4}{5} \widehat{i}-\frac{3}{5} \widehat{j}$.
(d) Find a direction, \widehat{u}, so that $D_{\widehat{u}} f(2,1)$ has the largest possible value.
5. Let $I \subseteq \mathbb{R}$ ba an open interval and $\sigma: I \rightarrow \mathbb{R}^{n}$ be a continuous path in \mathbb{R}^{n}.
(a) State precisely what it means for the path σ to be differentiable at a point $t \in I$.
(b) Prove that if the path σ is differentiable at $t \in I$, then the function

$$
g: I \rightarrow \mathbb{R}
$$

defined by

$$
g(t)=\|\sigma(t)\|^{2}, \quad \text { for all } t \in I
$$

is differentiable at t, and compute $g^{\prime}(t)$.
(c) Let g be as defined in part (b) above and suppose that g has a smallest passible value at some point $t_{o} \in I$. Prove that if g is differentiable at t_{o}, then $\sigma\left(t_{o}\right)$ and $\sigma^{\prime}\left(t_{o}\right)$ are orthogonal (or perpendicular) to each other.
(d) Find the point (or points) along the path in \mathbb{R}^{2} given by

$$
\sigma(t)=\left(t, t^{2}-1\right), \quad \text { for } t \in \mathbb{R}
$$

which are the closest to the origin $(0,0)$ in \mathbb{R}^{2}.
Suggestion: Use the information given in part (c) above.

