Exam 1

March 11, 2007

Name: _____

This is a closed book exam. Show all significant work and justify all your answers. Use your own paper and/or the paper provided by the instructor. You have 75 minutes to work on the following 5 problems. Relax.

- 1. The points P(1, 0, 0), Q(0, 2, 0) and R(0, 0, 3) determine a unique plane in three dimensional Euclidean space, \mathbb{R}^3 .
 - (a) Give the equation of the plane determined by P, Q and R.
 - (b) Give the parametric equations of the line through the origin in \mathbb{R}^3 which is perpendicular to the plane determined by P, Q and R.
 - (c) Find the intersection between the line found in part (b) above and the plane determined by P, Q and R.
 - (d) Find the (shortest) distance from the origin in \mathbb{R}^3 to the plane determined by P, Q and R.
- 2. Let $f: \mathbb{R}^2 \to \mathbb{R}$ denote the scalar field on \mathbb{R}^2 defined by

$$f(x,y) = \sqrt{|xy|}$$
 for all $(x,y) \in \mathbb{R}^2$.

- (a) Use the inequality $ab \leq \frac{1}{2}(a^2 + b^2)$, for all nonnegative real numbers a and b, and the Squeeze Theorem to prove that f is continuous at (0,0).
- (b) Show that the partial derivatives of f at (0,0) exist and compute them.
- (c) Show that f is not differentiable at (0,0).
- 3. Let U denote an open subset of \mathbb{R}^n , and let $F: U \to \mathbb{R}^m$ be a vector field on U.
 - (a) State precisely what it means for F to be differentiable at $u \in U$.
 - (b) Suppose that a vector field $F \colon \mathbb{R}^n \to \mathbb{R}^m$ is a linear map. Prove that F is differentiable at every $u \in U$, and compute its derivative map,

$$DF(u): \mathbb{R}^n \to \mathbb{R}^m,$$

at u, for all $u \in \mathbb{R}^n$.

Math 107. Rumbos

- 4. Let U denote an open subset of \mathbb{R}^n , and let $f: U \to \mathbb{R}$ denote a scalar field on U. Let \hat{u} denote a unit vector in \mathbb{R}^n .
 - (a) Prove that if f is differentiable at $v \in U$, then the limit

$$\lim_{t \to 0} \frac{f(v + t\widehat{u}) - f(v)}{t}$$

exists and is given by the component of the orthogonal projection of the gradient of f at v, $\nabla f(v)$, onto the direction of \hat{u} .

- (b) Denote the limit obtained in part (a) by $D_{\hat{u}}f(v)$. Give an interpretation for $D_{\hat{u}}f(v)$.
- (c) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by $f(x, y) = 3xy y^2$ for all $(x, y) \in \mathbb{R}^2$. Compute $D_{\widehat{u}}f(2, 1)$ where $\widehat{u} = \frac{4}{5} \widehat{i} \frac{3}{5} \widehat{j}$.
- (d) Find a direction, \hat{u} , so that $D_{\hat{u}}f(2,1)$ has the largest possible value.
- 5. Let $I \subseteq \mathbb{R}$ be an open interval and $\sigma: I \to \mathbb{R}^n$ be a continuous path in \mathbb{R}^n .
 - (a) State precisely what it means for the path σ to be differentiable at a point $t \in I$.
 - (b) Prove that if the path σ is differentiable at $t \in I$, then the function

$$g\colon I\to\mathbb{R}$$

defined by

$$g(t) = \|\sigma(t)\|^2$$
, for all $t \in I$,

is differentiable at t, and compute g'(t).

- (c) Let g be as defined in part (b) above and suppose that g has a smallest passible value at some point $t_o \in I$. Prove that if g is differentiable at t_o , then $\sigma(t_o)$ and $\sigma'(t_o)$ are orthogonal (or perpendicular) to each other.
- (d) Find the point (or points) along the path in \mathbb{R}^2 given by

$$\sigma(t) = (t, t^2 - 1), \quad \text{for } t \in \mathbb{R},$$

which are the closest to the origin (0,0) in \mathbb{R}^2 . Suggestion: Use the information given in part (c) above.