Review Problems for Exam 1

1. Compute the (shortest) distance from the point $P(4,0,-7)$ in \mathbb{R}^{3} to the plane given by

$$
4 x-y-3 z=12
$$

2. Compute the (shortest) distance from the point $P(4,0,-7)$ in \mathbb{R}^{3} to the line given by the parametric equations

$$
\left\{\begin{array}{l}
x=-1+4 t \\
y=-7 t \\
z=2-t
\end{array}\right.
$$

3. Compute the area of the triangle whose vertices in \mathbb{R}^{3} are the points $(1,1,0)$, $(2,0,1)$ and $(0,3,1)$
4. Let v and w be two vectors in \mathbb{R}^{3}, and let λ be a scalar. Show that the area of the parallelogram determined by the vectors v and $w+\lambda v$ is the same as that determined by v and w.
5. Let \widehat{u} denote a unit vector in \mathbb{R}^{n} and $P_{\widehat{u}}(v)$ denote the orthogonal projection of v along the direction of \widehat{u} for any vector $v \in \mathbb{R}^{n}$. Use the Cauchy-Schwarz inequality to prove that the map

$$
v \mapsto P_{\widehat{u}}(v) \quad \text { for all } v \in \mathbb{R}^{n}
$$

is a continuous map from \mathbb{R}^{n} to \mathbb{R}^{n}.
6. Define the scalar field $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $f(v)=\frac{1}{2}\|v\|^{2}$ for all $v \in \mathbb{R}^{n}$. Show that f is differentiable on \mathbb{R}^{n} and compute the linear map $D f(u): \mathbb{R}^{n} \rightarrow \mathbb{R}$ for all $u \in \mathbb{R}^{n}$. What is the gradient of f at u for all $x \in \mathbb{R}^{n}$?
7. Let $g:[0, \infty) \rightarrow \mathbb{R}$ be a differentiable, real-valued function of a single variable, and let $f(x, y)=g(r)$ where $r=\sqrt{x^{2}+y^{2}}$.
(a) Compute $\frac{\partial r}{\partial x}$ in terms of x and r, and $\frac{\partial r}{\partial y}$ in terms of y and r.
(b) Compute ∇f in terms of $g^{\prime}(r), r$ and the vector $\mathbf{r}=x \widehat{i}+y \widehat{j}$.
8. Let $f: U \rightarrow \mathbb{R}$ denote a scalar field defined on an open subset U of \mathbb{R}^{n}, and let \widehat{u} be a unit vector in \mathbb{R}^{n}. If the limit

$$
\lim _{t \rightarrow 0} \frac{f(v+t \widehat{u})-f(v)}{t}
$$

exists, we call it the directional derivative of f at v in the direction of the unit vector \widehat{u}. We denote it by $D_{\widehat{u}} f(v)$.
(a) Show that if f is differentiable at $v \in U$, then, for any unit vector \widehat{u} in \mathbb{R}^{n}, the directional derivative of f in the direction of \widehat{u} at v exists, and

$$
D_{\widehat{u}} f(v)=\nabla f(v) \cdot \widehat{u},
$$

where $\nabla f(v)$ is the gradient of f at v.
(b) Suppose that $f: U \rightarrow \mathbb{R}$ is differentiable at $v \in U$. Prove that if $D_{\widehat{u}} f(v)=$ 0 for every unit vector \widehat{u} in \mathbb{R}^{n}, then $\nabla f(v)$ must be the zero vector.
(c) Suppose that $f: U \rightarrow \mathbb{R}$ is differentiable at $v \in U$. Use the CauchySchwarz inequality to show that the largest value of $D_{\widehat{u}} f(v)$ is $\|\nabla f(v)\|$ and it occurs when \widehat{u} is in the direction of $\nabla f(v)$.
9. The scalar field $f: U \rightarrow \mathbb{R}$ is said to have a local minimum at $x \in U$ if there exists $r>0$ such that $B_{r}(x) \subseteq U$ and

$$
f(x) \leqslant f(y) \text { for every } y \in B_{r}(x)
$$

Prove that if f is differentiable at $x \in U$ and f has a local minimum at x, then $\nabla f(x)=\mathbf{0}$, the zero vector in \mathbb{R}^{n}.
10. Let I denote an open interval in \mathbb{R}. Suppose that $\sigma: I \rightarrow \mathbb{R}^{n}$ and $\gamma: I \rightarrow \mathbb{R}^{n}$ are paths in \mathbb{R}^{n}. Define a real valued function $f: I \rightarrow \mathbb{R}$ of a single variable by

$$
f(t)=\sigma(t) \cdot \gamma(t) \quad \text { for all } t \in I
$$

that is, $f(t)$ is the dot product of the two paths at t.
Show that if σ and γ are both differentiable on I, then so is f, and

$$
f^{\prime}(t)=\sigma^{\prime}(t) \cdot \gamma(t)+\sigma(t) \cdot \gamma^{\prime}(t) \quad \text { for all } t \in I
$$

11. Let $\sigma: I \rightarrow \mathbb{R}^{n}$ denote a differentiable path in \mathbb{R}^{n}. Show that if $\|\sigma(t)\|$ is constant for all $t \in I$, then $\sigma^{\prime}(t)$ is orthogonal to $\sigma(t)$ for all $t \in I$.
12. A particle is following a path in three-dimensional space given by

$$
\sigma(t)=\left(e^{t}, e^{-t}, 1-t\right) \quad \text { for } \quad t \in \mathbb{R}
$$

At time $t_{o}=1$, the particle flies off on a tangent.
(a) Where will the particle be at time $t_{1}=2$?
(b) Will the particle ever hit the $x y$-plane? Is so, find the location on the $x y$ plane where the particle hits.
13. Let U denote an open and convex subset of \mathbb{R}^{n}. Suppose that $f: U \rightarrow \mathbb{R}$ is differentiable at every $x \in U$. Fix x and y in U, and define $g:[0,1] \rightarrow \mathbb{R}$ by

$$
g(t)=f(x+t(y-x)) \text { for } 0 \leqslant t \leqslant 1
$$

(a) Explain why the function g is well defined.
(b) Show that g is differentiable on $(0,1)$ and that

$$
g^{\prime}(t)=\nabla f(x+t(y-x)) \cdot(y-x) \quad \text { for } \quad 0<t<1
$$

(Suggestion: Consider

$$
\frac{g(t+h)-g(t)}{h}=\frac{f(x+t(y-x)+h(y-x))-f(x+t(y-x))}{h}
$$

and apply the definition of differentiability of f at the point $x+t(y-x)$.)
(c) Use the Mean Value Theorem for derivatives to show that there exists a point z is the line segment connecting x to y such that

$$
f(y)-f(x)=D_{\widehat{u}} f(z)\|y-x\|,
$$

where \widehat{u} is the unit vector in the direction of the vector $y-x$; that is, $\widehat{u}=\frac{1}{\|y-x\|}(y-x)$.
(Hint: Observe that $g(1)-g(0)=f(y)-f(x)$.)
14. Prove that if U is an open and convex subset of \mathbb{R}^{n}, and $f: U \rightarrow \mathbb{R}$ is differentiable on U with $\nabla f(v)=\mathbf{0}$ for all $v \in U$, then f must be a constant function.

