Solutions to Review Problems for Exam 1

1. Compute the (shortest) distance from the point $P(4,0,-7)$ in \mathbb{R}^{3} to the plane given by

$$
4 x-y-3 z=12
$$

Solution: The point $P_{o}(3,0,0)$ is in the plane. Let

$$
w=\overrightarrow{P_{o} P}=\left(\begin{array}{c}
1 \\
0 \\
-7
\end{array}\right)
$$

The vector $n=\left(\begin{array}{c}4 \\ -1 \\ -3\end{array}\right) \quad$ is orthogonal to the plane. To find the shortest distance, d, from P to the plane, we compute the norm of the orthogonal projection of w onto n; that is,

$$
d=\left\|\operatorname{Proj}_{\widehat{n}}(w)\right\|,
$$

where

$$
\widehat{n}=\frac{1}{\sqrt{26}}\left(\begin{array}{c}
4 \\
-1 \\
-3
\end{array}\right)
$$

a unit vector in the direction of n, and

$$
\operatorname{Proj}_{\widehat{n}}(w)=(w \cdot \widehat{n}) \widehat{n} .
$$

It then follows that

$$
d=|w \cdot \widehat{n}|
$$

where $w \cdot \widehat{n}=\frac{1}{\sqrt{26}}(4+21)=\frac{25}{\sqrt{26}}$. Hence, $d=\frac{25 \sqrt{26}}{26} \approx 4.9$.
2. Compute the (shortest) distance from the point $P(4,0,-7)$ in \mathbb{R}^{3} to the line given by the parametric equations

$$
\left\{\begin{array}{l}
x=-1+4 t \\
y=-7 t \\
z=2-t
\end{array}\right.
$$

Solution: The point $P_{o}(-1,0,2)$ is on the line. The vector

$$
v=\left(\begin{array}{c}
4 \\
-7 \\
-1
\end{array}\right)
$$

gives the direction of the line. Put

$$
w=\overrightarrow{P_{o} P}=\left(\begin{array}{c}
5 \\
0 \\
-9
\end{array}\right)
$$

The vectors v and w determine a parallelogram whose area is the norm of v times the shortest distance, d, from P to the line determined by v at P_{o}. We then have that

$$
\operatorname{area}(P(v, w))=\|v\| d
$$

from which we get that

$$
d=\frac{\operatorname{area}(P(v, w))}{\|v\|}
$$

On the other hand,

$$
\operatorname{area}(P(v, w))=\|v \times w\|
$$

where

$$
v \times w=\left|\begin{array}{ccc}
\widehat{i} & \widehat{j} & \widehat{k} \\
4 & -7 & -1 \\
5 & 0 & -9
\end{array}\right|=63 \widehat{i}+31 \widehat{j}-35 \widehat{k}
$$

Thus, $\|v \times w\|=\sqrt{(63)^{2}+(31)^{2}+(35)^{2}}=\sqrt{6155}$ and therefore

$$
d=\frac{\sqrt{6155}}{\sqrt{66}} \approx 9.7
$$

3. Compute the area of the triangle whose vertices in \mathbb{R}^{3} are the points $(1,1,0)$, $(2,0,1)$ and $(0,3,1)$

Solution: Label the points $P_{o}(1,1,0), P_{1}(2,0,1)$ and $P_{2}(0,3,1)$ and define the vectors

$$
v=\overrightarrow{P_{o} P_{1}}=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right) \quad \text { and } \quad w=\overrightarrow{P_{o} P_{2}}=\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right)
$$

The area of the triangle determined by the points P_{o}, P_{1} and P_{2} is then half of the area of the parallelogram determined by the vectors v and w. Thus,

$$
\operatorname{area}\left(\triangle P_{o} P_{1} P_{2}\right)=\frac{1}{2}\|v \times w\|
$$

where

$$
v \times w=\left|\begin{array}{ccc}
\widehat{i} & \widehat{j} & \widehat{k} \\
1 & -1 & 1 \\
-1 & 2 & 1
\end{array}\right|=-3 \widehat{i}-2 \widehat{j}+\widehat{k}
$$

Consequently, $\operatorname{area}\left(\triangle P_{o} P_{1} P_{2}\right)=\frac{1}{2} \sqrt{9+4+1}=\frac{\sqrt{14}}{2} \approx 1.87$.
4. Let v and w be two vectors in \mathbb{R}^{3}, and let λ be a scalar. Show that the area of the parallelogram determined by the vectors v and $w+\lambda v$ is the same as that determined by v and w.

Solution: The area of the parallelogram determined by v and $w+\lambda v$ is

$$
\operatorname{area}(P(v, w+\lambda v))=\|v \times(w+\lambda v)\|
$$

where

$$
v \times(w+\lambda v)=v \times w+\lambda v \times v=v \times w .
$$

Consequently, $\operatorname{area}(P(v, w+\lambda v))=\|v \times w\|=\operatorname{area}(P(v, w))$.
5. Let \widehat{u} denote a unit vector in \mathbb{R}^{n} and $P_{\widehat{u}}(v)$ denote the orthogonal projection of v along the direction of \widehat{u} for any vector $v \in \mathbb{R}^{n}$. Use the Cauchy-Schwarz inequality to prove that the map

$$
v \mapsto P_{\widehat{u}}(v) \text { for all } v \in \mathbb{R}^{n}
$$

is a continuous map from \mathbb{R}^{n} to \mathbb{R}^{n}.

Solution: $P_{\widehat{u}}(v)=(v \cdot \widehat{u}) \widehat{u}$ for all $v \in \mathbb{R}^{n}$. Consequently, for any $w, v \in \mathbb{R}^{n}$,

$$
\begin{aligned}
P_{\widehat{u}}(w)-P_{\widehat{u}}(v) & =(w \cdot \widehat{u}) \widehat{u}-(v \cdot \widehat{u}) \widehat{u} \\
& =(w \cdot \widehat{u}-v \cdot \widehat{u}) \widehat{u} \\
& =[(w-v) \cdot \widehat{u}] \widehat{u} .
\end{aligned}
$$

It then follows that

$$
\left\|P_{\widehat{u}}(w)-P_{\widehat{u}}(v)\right\|=|(w-v) \cdot \widehat{u}|,
$$

since $\|\widehat{u}\|=1$. Hence, by the Cauchy-Schwarz inequality,

$$
\left\|P_{\widehat{u}}(w)-P_{\widehat{u}}(v)\right\| \leqslant\|w-v\| .
$$

Applying the Squeeze Theorem we then get that

$$
\lim _{\|w-v\| \rightarrow 0}\left\|P_{\widehat{u}}(w)-P_{\widehat{u}}(v)\right\|=0
$$

which shows that $P_{\widehat{u}}$ is continuous at every $v \in V$.
6. Define the scalar field $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $f(v)=\frac{1}{2}\|v\|^{2}$ for all $v \in \mathbb{R}^{n}$. Show that f is differentiable on \mathbb{R}^{n} and compute the linear map $D f(u): \mathbb{R}^{n} \rightarrow \mathbb{R}$ for all $u \in \mathbb{R}^{n}$. What is the gradient of f at u for all $x \in \mathbb{R}^{n}$?

Solution: Let u and w be any vector in \mathbb{R}^{n} and consider

$$
\begin{aligned}
f(u+w) & =\frac{1}{2}\|u+w\|^{2} \\
& =\frac{1}{2}(u+w) \cdot(u+w) \\
& =\frac{1}{2} u \cdot u+u \cdot w+\frac{1}{2} w \cdot w \\
& =\frac{1}{2}\|u\|^{2}+u \cdot w+\frac{1}{2}\|w\|^{2} .
\end{aligned}
$$

Thus,

$$
f(u+w)-f(u)-u \cdot w=\frac{1}{2}\|w\|^{2} .
$$

Consequently,

$$
\frac{|f(u+w)-f(u)-u \cdot w|}{\|w\|}=\frac{1}{2}\|w\|,
$$

from which we get that

$$
\lim _{\|w\| \rightarrow 0} \frac{|f(u+w)-f(u)-u \cdot w|}{\|w\|}=0
$$

and therefore f is differentiable at u with derivative map $D f(u)$ given by

$$
D f(u) w=u \cdot w \quad \text { for all } w \in \mathbb{R}^{n}
$$

Hence, $\nabla f(u)=u$ for all $u \in \mathbb{R}^{n}$.
7. Let $g:[0, \infty) \rightarrow \mathbb{R}$ be a differentiable, real-valued function of a single variable, and let $f(x, y)=g(r)$ where $r=\sqrt{x^{2}+y^{2}}$.
(a) Compute $\frac{\partial r}{\partial x}$ in terms of x and r, and $\frac{\partial r}{\partial y}$ in terms of y and r.

Solution: Take the partial derivative of $r^{2}=x^{2}+y^{2}$ on both sides with respect to x to obtain

$$
\frac{\partial\left(r^{2}\right)}{\partial x}=2 x
$$

Applying the chain rule on the left-hand side we get

$$
2 r \frac{\partial r}{\partial x}=2 x
$$

which leads to

$$
\frac{\partial r}{\partial x}=\frac{x}{r}
$$

Similarly, $\frac{\partial r}{\partial y}=\frac{y}{r}$.
(b) Compute ∇f in terms of $g^{\prime}(r), r$ and the vector $\mathbf{r}=x \widehat{i}+y \widehat{j}$.

Solution: Take the partial derivative of $f(x, y)=g(r)$ on both sides with respect to x and apply the Chain Rule to obtain

$$
\frac{\partial f}{\partial x}=g^{\prime}(r) \frac{\partial r}{\partial x}=g^{\prime}(r) \frac{x}{r} .
$$

Similarly, $\frac{\partial f}{\partial y}=g^{\prime}(r) \frac{y}{r}$.
It then follows that

$$
\begin{aligned}
\nabla f & =\frac{\partial f}{\partial x} \widehat{i}+\frac{\partial f}{\partial y} \widehat{j} \\
& =g^{\prime}(r) \frac{x}{r} \widehat{i}+g^{\prime}(r) \frac{y}{r} \widehat{j} \\
& =\frac{g^{\prime}(r)}{r}(x \widehat{i}+y \widehat{j}) \\
& =\frac{g^{\prime}(r)}{r} \mathbf{r} .
\end{aligned}
$$

8. Let $f: U \rightarrow \mathbb{R}$ denote a scalar field defined on an open subset U of \mathbb{R}^{n}, and let \widehat{u} be a unit vector in \mathbb{R}^{n}. If the limit

$$
\lim _{t \rightarrow 0} \frac{f(v+t \widehat{u})-f(v)}{t}
$$

exists, we call it the directional derivative of f at v in the direction of the unit vector \widehat{u}. We denote it by $D_{\widehat{u}} f(v)$.
(a) Show that if f is differentiable at $v \in U$, then, for any unit vector \widehat{u} in \mathbb{R}^{n}, the directional derivative of f in the direction of \widehat{u} at v exists, and

$$
D_{\widehat{u}} f(v)=\nabla f(v) \cdot \widehat{u}
$$

where $\nabla f(v)$ is the gradient of f at v.
Proof: Suppose that f is differentiable at $v \in U$. Then,

$$
f(v+w)=f(v)+D f(v) w+E(w)
$$

where

$$
D f(v) w=\nabla f(v) \cdot w
$$

and

$$
\lim _{\|w\| \rightarrow 0} \frac{|E(w)|}{\|w\|}=0
$$

Thus, for any $t \in \mathbb{R}$,

$$
f(v+t \widehat{u})=f(v)+t \nabla f(v) \cdot \widehat{u}+E(t \widehat{u}),
$$

where

$$
\lim _{|t| \rightarrow 0} \frac{|E(t \widehat{u})|}{|t|}=0
$$

since $\|t \widehat{u}\|=|t|\|\widehat{u}\|=|t|$.
We then have that, for $t \neq 0$,

$$
\frac{f(v+t \widehat{u})-f(v)}{t}-\nabla f(v) \cdot \widehat{u}=\frac{E(t \widehat{u})}{t}
$$

and consequently

$$
\left|\frac{f(v+t \widehat{u})-f(v)}{t}-\nabla f(v) \cdot \widehat{u}\right|=\frac{|E(t \widehat{u})|}{|t|}
$$

from which we get that

$$
\lim _{t \rightarrow 0}\left|\frac{f(v+t \widehat{u})-f(v)}{t}-\nabla f(v) \cdot \widehat{u}\right|=0
$$

(b) Suppose that $f: U \rightarrow \mathbb{R}$ is differentiable at $v \in U$. Prove that if $D_{\widehat{u}} f(v)=$ 0 for every unit vector \widehat{u} in \mathbb{R}^{n}, then $\nabla f(v)$ must be the zero vector.

Proof: Suppose, by way of contradiction, that $\nabla f(v) \neq \mathbf{0}$, and put

$$
\widehat{u}=\frac{1}{\|\nabla f(v)\|} \nabla f(v)
$$

Then, \widehat{u} is a unit vector, and therefore, by the assumption,

$$
D_{\widehat{u}} f(v)=0,
$$

or

$$
\nabla f(v) \cdot \widehat{u}=0
$$

But this implies that

$$
\nabla f(v) \cdot \frac{1}{\|\nabla f(v)\|} \nabla f(v)=0
$$

where

$$
\begin{aligned}
\nabla f(v) \cdot \frac{1}{\|\nabla f(v)\|} \nabla f(v) & =\frac{1}{\|\nabla f(v)\|} \nabla f(v) \cdot \nabla f(v) \\
& =\frac{1}{\|\nabla f(v)\|}\|\nabla f(v)\|^{2} \\
& =\|\nabla f(v)\|
\end{aligned}
$$

It then follows that $\|\nabla f(v)\|=0$, which contradicts the assumption that $\nabla f(v) \neq \mathbf{0}$. Therefore, $\nabla f(v)$ must be the zero vector.
(c) Suppose that $f: U \rightarrow \mathbb{R}$ is differentiable at $v \in U$. Use the CauchySchwarz inequality to show that the largest value of $D_{\widehat{u}} f(v)$ is $\|\nabla f(v)\|$ and it occurs when \widehat{u} is in the direction of $\nabla f(v)$.

Proof. If f is differentiable at x, then $D_{\widehat{u}} f(x)=\nabla f(x) \cdot \widehat{u}$, as was shown in part (a). Thus, by the Cauchy-Schwarz inequality,

$$
\left|D_{\widehat{u}} f(x)\right| \leqslant\|\nabla f(x)\|\|\widehat{u}\|=\|\nabla f(x)\|,
$$

since \widehat{u} is a unit vector. Hence,

$$
-\|\nabla f(x)\| \leqslant D_{\widehat{u}} f(x) \leqslant\|\nabla f(x)\|
$$

for any unit vector \widehat{u}, and so the largest value that $D_{\widehat{u}} f(x)$ can have is $\|\nabla f(x)\|$.
If $\nabla f(x) \neq \mathbf{0}$, then $\widehat{u}=\frac{1}{\|\nabla f(x)\|} \nabla f(x)$ is a unit vector, and

$$
\begin{aligned}
D_{\widehat{u}} f(x) & =\nabla f(x) \cdot \widehat{u} \\
& =\nabla f(x) \cdot \frac{1}{\|\nabla f(x)\|} \nabla f(x) \\
& =\frac{1}{\|\nabla f(x)\|} \nabla f(x) \cdot \nabla f(x) \\
& =\frac{1}{\|\nabla f(x)\|}\|\nabla f(x)\|^{2} \\
& =\|\nabla f(x)\| .
\end{aligned}
$$

Thus, $D_{\widehat{u}} f(x)$ attains its largest value when \widehat{u} is in the direction of $\nabla f(x)$.
9. The scalar field $f: U \rightarrow \mathbb{R}$ is said to have a local minimum at $x \in U$ if there exists $r>0$ such that $B_{r}(x) \subseteq U$ and

$$
f(x) \leqslant f(y) \text { for every } y \in B_{r}(x)
$$

Prove that if f is differentiable at $x \in U$ and f has a local minimum at x, then $\nabla f(x)=\mathbf{0}$, the zero vector in \mathbb{R}^{n}.

Proof. Let \widehat{u} be a unit vector and $t \in \mathbb{R}$ be such that $|t|<r$; then,

$$
f(x+t \widehat{u}) \geqslant f(x),
$$

from which we get that

$$
f(x+t \widehat{u})-f(x) \geqslant 0
$$

Dividing by $t>0$ we then have that

$$
\frac{f(x+t \widehat{u})-f(x)}{t} \geqslant 0
$$

Thus, letting $t \rightarrow 0^{+}$, we get that

$$
\begin{equation*}
D_{\widehat{u}} f(x) \geqslant 0, \tag{1}
\end{equation*}
$$

since f is differentiable at x. Similarly, dividing by $t<0$, we have

$$
\frac{f(x+t \widehat{u})-f(x)}{t} \leqslant 0,
$$

from which we obtain, letting $t \rightarrow 0^{-}$, that

$$
\begin{equation*}
D_{\widehat{u}} f(x) \leqslant 0 \tag{2}
\end{equation*}
$$

Combining (1) and (2) we then have that

$$
D_{\widehat{u}} f(x)=0,
$$

where \widehat{u} is an arbitrary unit vector. It then follows from the previous problem that $\nabla f(x)=\mathbf{0}$.
10. Let I denote an open interval in \mathbb{R}. Suppose that $\sigma: I \rightarrow \mathbb{R}^{n}$ and $\gamma: I \rightarrow \mathbb{R}^{n}$ are paths in \mathbb{R}^{n}. Define a real valued function $f: I \rightarrow \mathbb{R}$ of a single variable by

$$
f(t)=\sigma(t) \cdot \gamma(t) \quad \text { for all } t \in I
$$

that is, $f(t)$ is the dot product of the two paths at t.
Show that if σ and γ are both differentiable on I, then so is f, and

$$
f^{\prime}(t)=\sigma^{\prime}(t) \cdot \gamma(t)+\sigma(t) \cdot \gamma^{\prime}(t) \quad \text { for all } t \in I
$$

Solution: Let $t \in I$ and assume that both σ and γ are differentiable at t. Then,

$$
\sigma(t+h)=\sigma(t)+h \sigma^{\prime}(t)+E_{1}(h), \quad \text { for } \quad|h| \text { sufficiently small, }
$$

where

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{\left\|E_{1}(h)\right\|}{|h|}=0 . \tag{3}
\end{equation*}
$$

Similarly,

$$
\gamma(t+h)=\gamma(t)+h \gamma^{\prime}(t)+E_{2}(h), \quad \text { for } \quad|h| \text { sufficiently small, }
$$

where

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{\left\|E_{2}(h)\right\|}{|h|}=0 . \tag{4}
\end{equation*}
$$

It then follows that, for $|h|$ sufficiently small,

$$
\begin{aligned}
f(t+h)= & \sigma(t+h) \cdot \gamma(t+h) \\
= & \left(\sigma(t)+h \sigma^{\prime}(t)+E_{1}(h)\right) \cdot\left(\gamma(t)+h \gamma^{\prime}(t)+E_{2}(h)\right) \\
= & \left.\sigma(t) \cdot \gamma(t)+h \sigma(t) \cdot \gamma^{\prime}(t)+\sigma(t) \cdot E_{2}(h)\right)+h \sigma^{\prime}(t) \cdot \gamma(t) \\
& +h^{2} \sigma^{\prime}(t) \cdot \gamma^{\prime}(t)+h \sigma^{\prime}(t) \cdot E_{2}(h)+E_{1}(h) \cdot \gamma(t) \\
& +h E_{1}(h) \cdot \gamma^{\prime}(t)+E_{1}(h) \cdot E_{2}(h) \\
= & f(t)+h\left[\sigma(t) \cdot \gamma^{\prime}(t)+\sigma^{\prime}(t) \cdot \gamma(t)\right]+h^{2} \sigma^{\prime}(t) \cdot \gamma^{\prime}(t) \\
& \left.+\sigma(t) \cdot E_{2}(h)\right)+h \sigma^{\prime}(t) \cdot E_{2}(h)+E_{1}(h) \cdot \gamma(t) \\
& +h E_{1}(h) \cdot \gamma^{\prime}(t)+E_{1}(h) \cdot E_{2}(h)
\end{aligned}
$$

Rearranging terms and dividing by $h \neq 0$ and $|h|$ small enough, we then have that

$$
\begin{aligned}
\frac{f(t+h)-f(t)}{h}= & \sigma(t) \cdot \gamma^{\prime}(t)+\sigma^{\prime}(t) \cdot \gamma(t)++h \sigma^{\prime}(t) \cdot \gamma^{\prime}(t) \\
& +\sigma(t) \cdot \frac{E_{2}(h)}{h}+\sigma^{\prime}(t) \cdot E_{2}(h)+\frac{E_{1}(h)}{h} \cdot \gamma(t) \\
& +E_{1}(h) \cdot \gamma^{\prime}(t)+E_{1}(h) \cdot \frac{E_{2}(h)}{h}
\end{aligned}
$$

Observe that, as $h \rightarrow 0$, all the terms on the right hand side of the previous expression which involve E_{1} or E_{2} go to 0 , by virtue of the

Cauchy-Schwarz inequality and (3) and (4). Therefore, we obtain that

$$
\lim _{h \rightarrow 0} \frac{f(t+h)-f(t)}{h}=\sigma(t) \cdot \gamma^{\prime}(t)+\sigma^{\prime}(t) \cdot \gamma(t)
$$

Hence, f is differentiable at t, and its derivative at t is

$$
f^{\prime}(t)=\sigma(t) \cdot \gamma^{\prime}(t)+\sigma^{\prime}(t) \cdot \gamma(t)
$$

Since t is an arbitrary element of I, the result follows.
11. Let $\sigma: I \rightarrow \mathbb{R}^{n}$ denote a differentiable path in \mathbb{R}^{n}. Show that if $\|\sigma(t)\|$ is constant for all $t \in I$, then $\sigma^{\prime}(t)$ is orthogonal to $\sigma(t)$ for all $t \in I$.

Solution: Let $\|\sigma(t)\|=c$, where c denotes a constant. Then,

$$
\|\sigma(t)\|^{2}=c^{2}
$$

or

$$
\sigma(t) \cdot \sigma(t)=c^{2}
$$

Differentiating with respect to t on both sides, and using the result of the previous problem, we obtain that

$$
\sigma(t) \cdot \sigma^{\prime}(t)+\sigma^{\prime}(t) \cdot \sigma(t)=0
$$

or, by the symmetry of the dot-product,

$$
2 \sigma^{\prime}(t) \cdot \sigma(t)=0
$$

or

$$
\sigma^{\prime}(t) \cdot \sigma(t)=0
$$

Hence, $\sigma^{\prime}(t)$ is orthogonal to $\sigma(t)$ for all $t \in I$.
12. A particle is following a path in three-dimensional space given by

$$
\sigma(t)=\left(e^{t}, e^{-t}, 1-t\right) \quad \text { for } \quad t \in \mathbb{R} .
$$

At time $t_{o}=1$, the particle flies off on a tangent.
(a) Where will the particle be at time $t_{1}=2$?

Solution: Find the tangent line to the path at $\sigma(1)$:

$$
\vec{r}(t)=\sigma(1)+(t-1) \sigma^{\prime}(1)
$$

where

$$
\sigma^{\prime}(t)=\left(e^{t},-e^{-t},-1\right) \quad \text { for } t \in \mathbb{R}
$$

Then,

$$
\vec{r}(t)=(e, 1 / e, 0)+(t-1)(e,-1 / e,-1)
$$

The parametric equations of the tangent line then are

$$
\left\{\begin{array}{l}
x=e+e(t-1) \\
y=1 / e-(t-1) / e \\
z=1-t
\end{array}\right.
$$

When $t=2$, the particle will be at the point in \mathbb{R}^{3} with coordinates

$$
(2 e, 0,-1)
$$

(b) Will the particle ever hit the $x y$-plane? Is so, find the location on the $x y$ plane where the particle hits.

Answer: The particle leaves the path at the point with coordinates $(e, 1 / e, 0)$ on the $x y$-plane. After that, it doesn't come back to it.
13. Let U denote an open and convex subset of \mathbb{R}^{n}. Suppose that $f: U \rightarrow \mathbb{R}$ is differentiable at every $x \in U$. Fix x and y in U, and define $g:[0,1] \rightarrow \mathbb{R}$ by

$$
g(t)=f(x+t(y-x)) \text { for } 0 \leqslant t \leqslant 1
$$

(a) Explain why the function g is well defined.

Solution: Since U is convex, $x+t(y-x)$ is in U for $0 \leqslant t \leqslant 1$. Thus, $f(x+t(y-x))$ is defined for $t \in[0,1]$.
(b) Show that g is differentiable on $(0,1)$ and that

$$
g^{\prime}(t)=\nabla f(x+t(y-x)) \cdot(y-x) \quad \text { for } 0<t<1
$$

(Suggestion: Consider

$$
\frac{g(t+h)-g(t)}{h}=\frac{f(x+t(y-x)+h(y-x))-f(x+t(y-x))}{h}
$$

and apply the definition of differentiability of f at the point $x+t(y-x)$.)

Proof. Since f is differentiable on U, for $|h|$ small enough,
$f(x+t(y-x)+h(y-x))=f(x+t(y-x))+D f(x+t(y-x))(h(y-x))+E(h(y-x))$,
where

$$
\begin{equation*}
\lim _{\|w\| \rightarrow 0} \frac{|E(w)|}{\|w\|}=0 \tag{5}
\end{equation*}
$$

Thus,
$f(x+t(y-x)+h(y-x))=f(x+t(y-x))+h \nabla f(x+t(y-x)) \cdot(y-x)+E((h(y-x))$,
from which we get that

$$
\begin{aligned}
\frac{g(t+h)-g(t)}{h} & =\frac{f(x+t(y-x)+h(y-x))-f(x+t(y-x))}{h} \\
& =\nabla f(x+t(y-x)) \cdot(y-x)+\frac{E(h(y-x))}{h}
\end{aligned}
$$

for $h \neq 0$.
Observe that

$$
\lim _{h \rightarrow 0} \frac{|E(h(y-x))|}{h}=\lim _{h \rightarrow 0}\|y-x\| \frac{|E(h(y-x))|}{\|h(y-x)\|}=0
$$

by virtue of (5). It then follows that

$$
\lim _{h \rightarrow 0} \frac{g(t+h)-g(t)}{h}=\nabla f(x+t(y-x)) \cdot(y-x)
$$

and therefore g is differentiable at t and $g^{\prime}(t)=\nabla f(x+t(y-x)) \cdot(y-x)$.
(c) Use the Mean Value Theorem for derivatives to show that there exists a point z is the line segment connecting x to y such that

$$
f(y)-f(x)=D_{\widehat{u}} f(z)\|y-x\|
$$

where \widehat{u} is the unit vector in the direction of the vector $y-x$; that is, $\widehat{u}=\frac{1}{\|y-x\|}(y-x)$.
(Hint: Observe that $g(1)-g(0)=f(y)-f(x)$.)
Solution: Assume that $x \neq y$, for if $x=y$ the equality certainly holds true.

By the Mean Value Theorem, there exists $\tau \in(0,1)$ such that

$$
g(1)-g(0)=g^{\prime}(\tau)(1-0)=g^{\prime}(\tau)
$$

It then follows that

$$
f(y)-f(x)=\nabla f(x+\tau(y-x)) \cdot(y-x)
$$

Put $z=x+\tau(y-x)$; then, z is a point in the line segment connecting x to y, and

$$
\begin{aligned}
f(y)-f(x) & =\nabla f(z) \cdot(y-x) \\
& =\nabla f(z) \cdot \frac{y-x}{\|y-x\|}\|y-x\| \\
& =\nabla f(z) \cdot \widehat{u}\|y-x\| \\
& =D_{\widehat{u}} f(z)\|y-x\|,
\end{aligned}
$$

where $\widehat{u}=\frac{1}{\|y-x\|}(y-x)$.
14. Prove that if U is an open and convex subset of \mathbb{R}^{n}, and $f: U \rightarrow \mathbb{R}$ is differentiable on U with $\nabla f(v)=\mathbf{0}$ for all $v \in U$, then f must be a constant function.

Solution: Fix $x_{o} \in U$; then, since U is convex, for any $x \in U \backslash\left\{x_{o}\right\}$, the line segment connecting x_{o} to x is entirely contained in U. Furthermore, by the argument in part (c) of the previous problem, there exists z in the line segment connecting x_{o} to x such that

$$
f(x)-f\left(x_{o}\right)=D_{\widehat{u}} f(z)\left\|x-x_{o}\right\|,
$$

where $\widehat{u}=\frac{1}{\left\|x-x_{o}\right\|}\left(x-x_{o}\right)$.
Now, $D_{\widehat{u}} f(z)=\nabla f(z) \cdot \widehat{u}=0$, since $\nabla f(x)=\mathbf{0}$ for all $x \in U$.
Therefore,

$$
f(x)=f\left(x_{o}\right)
$$

Since x was arbitrary, it follows that f maps every element in U to $f\left(x_{o}\right)$; that is, f is a constant function.

