Review Problems for Exam 2

1. Consider a wheel of radius a which is rolling on the x-axis in the $x y$-plane. Suppose that the center of the wheel moves in the positive x-direction and a constant speed v_{o}. Let P denote a fixed point on the rim of the wheel.
(a) Give a path $\sigma(t)=(x(t), y(t))$ giving the position of the P at any time t, if P is initially at the point $(0,2 a)$.
(b) Compute the velocity of P at any time t. When is the velocity of P horizontal? What is the speed of P at those times?
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ denote a twice-differentiable real valued function and define

$$
u(x, t)=f(x-c t) \quad \text { for all } \quad(x, t) \in \mathbb{R}^{2}
$$

where c is a real constant.
Show that

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ denote a twice-differentiable real valued function and define

$$
u(x, y)=f(r) \quad \text { where } r=\sqrt{x^{2}+y^{2}} \quad \text { for all }(x, y) \in \mathbb{R}^{2}
$$

The Laplacian of u, denoted by Δu, is defined to be

$$
\Delta u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}} .
$$

Express the Laplacian of u in terms of $f^{\prime}, f^{\prime \prime}$ and r.
4. Let $f(x, y)=4 x-7 y$ for all $(x, y) \in \mathbb{R}^{2}$, and $g(x, y)=2 x^{2}+y^{2}$.
(a) Sketch the graph of the set $C=g^{-1}(1)=\left\{(x, y) \in \mathbb{R}^{2} \mid g(x, y)=1\right\}$.
(b) Show that at the points where f has an extremum on C, the gradient of f is parallel to the gradient of g.
(c) Find largest and the smallest value of f on C.
5. Let $C=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1, y \geqslant 0\right\}$; i.e., C is the upper unit semi-circle. C can be parametrized by

$$
\sigma(\tau)=\left(\tau, \sqrt{1-\tau^{2}}\right) \quad \text { for } \quad-1 \leqslant \tau \leqslant 1
$$

(a) Compute $s(t)$, the arclength along C from $(-1,0)$ to the point $\sigma(t)$, for $0 \leqslant t \leqslant 1$.
(b) Compute $s^{\prime}(t)$ for $-1<t<t$ and sketch the graph of s as function of t.
(c) Show that $\cos (\pi-s(t))=t$ for all $-1 \leqslant t \leqslant 1$, and deduce that

$$
\sin (s(t))=\sqrt{1-t^{2}} \quad \text { for all } \quad-1 \leqslant t \leqslant 1
$$

6. Let $\omega=2 x \mathrm{~d} x+y \quad \mathrm{~d} y$ and $\eta=y d x-x \quad \mathrm{~d} y$ denote differential 1-forms. Compute each of the following $\omega \wedge \mathrm{d} \eta, \eta \wedge \mathrm{d} \omega$ and $\mathrm{d}(\omega \wedge \eta)$.
7. Let C denote the unit circle traversed in the counterclockwise direction. Evaluate the line integral $\int_{C} x^{3} \mathrm{~d} y-y^{3} \mathrm{~d} x$.
8. Let $F(x, y)=y \widehat{i}-x \widehat{j}$ and R be the square in the $x y$-plane with vertices $(0,0)$, $(2,-1),(3,1)$ and $(1,2)$. Evaluate $\int_{\partial R} F \cdot n \mathrm{~d} s$.
