Solutions to Review Problems for Exam 2

1. Consider a wheel of radius a which is rolling on the x-axis in the $x y$-plane. Suppose that the center of the wheel moves in the positive x-direction and a constant speed v_{o}. Let P denote a fixed point on the rim of the wheel.
(a) Give a path $\sigma(t)=(x(t), y(t))$ giving the position of the P at any time t, if P is initially at the point $(0,2 a)$.

Solution: Let $\theta(t)$ denote the angle that the ray from the center

Figure 1: Circle
of the circle to the point $(x(t), y(t))$ makes with a vertical line through the center. Then, $v_{o} t=a \theta(t)$; so that $\theta(t)=\frac{v_{o}}{a} t$ and

$$
x(t)=v_{o} t+a \sin (\theta(t))
$$

and

$$
y(t)=a+a \cos (\theta(t))
$$

(b) Compute the velocity of P at any time t. When is the velocity of P horizontal? What is the speed of P at those times?

Solution: The velocity vector is

$$
\sigma^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t)\right)=\left(v_{o}+a \theta^{\prime}(t) \cos (\theta(t)),-a \theta^{\prime}(t) \sin (\theta(t))\right)
$$

where

$$
\theta^{\prime}(t)=\frac{v_{o}}{a} .
$$

We then have that

$$
\sigma^{\prime}(t)=\left(v_{o}+v_{o} \cos (\theta(t)),-v_{o} \sin (\theta(t))\right)
$$

The velocity of P is horizontal when

$$
\sin (\theta(t))=0
$$

or

$$
\theta(t)=n \pi,
$$

where n is an integer; and when

$$
\cos (\theta(t)) \neq-1
$$

We then get that the velocity of P is horizontal when

$$
\theta(t)=2 k \pi
$$

where k is an integer.
The speed at the points where the velocity if horizontal is then equal to $2 v_{0}$.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ denote a twice-differentiable real valued function and define

$$
u(x, t)=f(x-c t) \quad \text { for all }(x, t) \in \mathbb{R}^{2}
$$

where c is a real constant.
Show that

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

Solution: Use the Chain Rule to compute

$$
\frac{\partial u}{\partial t}=f^{\prime}(x-c t) \cdot \frac{\partial}{\partial t}(x-c t)=-c f^{\prime}(x-c t)
$$

and

$$
\frac{\partial^{2} u}{\partial t^{2}}=c f^{\prime \prime}(x-c t) \cdot \frac{\partial}{\partial t}(x-c t)=c^{2} f^{\prime \prime}(x-c t)
$$

Similarly,

$$
\frac{\partial^{2} u}{\partial x^{2}}=f^{\prime \prime}(x-c t)
$$

since $\frac{\partial}{\partial x}(x-c t)=1$. Hence,

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} f^{\prime \prime}(x-c t)=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ denote a twice-differentiable real valued function and define

$$
u(x, y)=f(r) \quad \text { where } r=\sqrt{x^{2}+y^{2}} \quad \text { for all }(x, y) \in \mathbb{R}^{2}
$$

The Laplacian of u, denoted by Δu, is defined to be

$$
\Delta u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}} .
$$

Express the Laplacian of u in terms of $f^{\prime}, f^{\prime \prime}$ and r.
Solution: First note that $r^{2}=x^{2}+y^{2}$, from which we get that

$$
2 r \frac{\partial r}{\partial x}=2 x
$$

or

$$
\frac{\partial r}{\partial x}=\frac{x}{r} .
$$

Similarly,

$$
\frac{\partial r}{\partial y}=\frac{y}{r} .
$$

Next, use the Chain Rule to compute

$$
\frac{\partial u}{\partial x}=f^{\prime}(r) \cdot \frac{\partial r}{\partial x}=f^{\prime}(r) \frac{x}{r}
$$

Differentiating with respect to x again, using the Chain, Product and Quotient rules,

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x^{2}} & =\frac{\partial}{\partial x}\left(x \frac{f^{\prime}(r)}{r}\right) \\
& =\frac{f^{\prime}(r)}{r}+x \frac{\partial}{\partial x}\left(\frac{f^{\prime}(r)}{r}\right) \\
& =\frac{f^{\prime}(r)}{r}+x \frac{r f^{\prime \prime}(r) \frac{x}{r}-f^{\prime}(r) \frac{x}{r}}{r^{2}} \\
& =\frac{f^{\prime}(r)}{r}+\frac{x^{2}}{r^{2}} f^{\prime \prime}(r)-\frac{x^{2}}{r^{3}} f^{\prime}(r)
\end{aligned}
$$

Similarly,

$$
\frac{\partial^{2} u}{\partial y^{2}}=\frac{f^{\prime}(r)}{r}+\frac{y^{2}}{r^{2}} f^{\prime \prime}(r)-\frac{y^{2}}{r^{3}} f^{\prime}(r) .
$$

Hence

$$
\begin{aligned}
\Delta u & =\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}} \\
& =2 \frac{f^{\prime}(r)}{r}+\frac{x^{2}+y^{2}}{r^{2}} f^{\prime \prime}(r)-\frac{x^{2}+y^{2}}{r^{3}} f^{\prime}(r) \\
& =2 \frac{f^{\prime}(r)}{r}+\frac{r^{2}}{r^{2}} f^{\prime \prime}(r)-\frac{r^{2}}{r^{3}} f^{\prime}(r) \\
& =2 \frac{f^{\prime}(r)}{r}+f^{\prime \prime}(r)-\frac{1}{r} f^{\prime}(r) \\
& =f^{\prime \prime}(r)+\frac{1}{r} f^{\prime}(r)
\end{aligned}
$$

4. Let $f(x, y)=4 x-7 y$ for all $(x, y) \in \mathbb{R}^{2}$, and $g(x, y)=2 x^{2}+y^{2}$.
(a) Sketch the graph of the set $C=g^{-1}(1)=\left\{(x, y) \in \mathbb{R}^{2} \mid g(x, y)=1\right\}$.

Solution: The curve C is given by the set of points (x, y) in \mathbb{R}^{2} such that

$$
2 x^{2}+y^{2}=1
$$

or

$$
\frac{x^{2}}{1 / 2}+y^{2}=1
$$

That is, C is an ellipse with minor vertices $\pm 1 / \sqrt{2}$ and major vertices ± 1. The sketch is shown in Figure 2.
(b) Show that at the points where f has an extremum on C, the gradient of f is parallel to the gradient of g.

Solution: Let $\sigma(t)$ be a parametrization of the ellipse. We want to find a value of t for which the function $f(\sigma(t))$ is the largest. Thus, we first look for critical points of this function. By the Chain Rule,

$$
\frac{d}{d t}(f(\sigma(t)))=\nabla f(\sigma(t)) \cdot \sigma^{\prime}(t)
$$

Thus, t is a critical point if the tangent vector $\sigma^{\prime}(t)$ is perpendicular to $\nabla f(x, y)=4 \widehat{i}-7 \widehat{j}$.

Figure 2: Sketch of ellipse

On the other hand, from

$$
g(\sigma(t))=1 \quad \text { for all } \mathrm{t}
$$

we get that

$$
\nabla g(\sigma(t)) \cdot \sigma^{\prime}(t)=0
$$

so that $\sigma^{\prime}(t)$ is also perpendicular to $\nabla g(x, y)=4 x \widehat{i}+2 y \widehat{j}$. Hence, ∇f and ∇g must be parallel at a critical points; that is, there must be a constant $\lambda \neq 0$ such that

$$
\begin{equation*}
\nabla g(x, y)=\lambda \nabla f(x, y) \tag{1}
\end{equation*}
$$

(c) Find largest and the smallest value of f on C.

Solution: To find the critical points of f on C we use the condition (1) derived in the previous part, or

$$
4 \widehat{x i}+2 y \widehat{j}=4 \widehat{\lambda}-7 \lambda \widehat{j} .
$$

We then get that

$$
4 x=4 \lambda
$$

and

$$
2 y=-7 \lambda
$$

In other words, a critical point (x, y) must lie in the line

$$
2 y=-7 x
$$

Next, we find the intersection of this line with the ellipse.
Solving for y and substituting into the equation of the ellipse we get that

$$
2 x^{2}+\left(\frac{-7 x}{2}\right)^{2}=1
$$

or

$$
2 x^{2}+\frac{49}{4} x^{2}=1
$$

or

$$
\frac{57}{4} x^{2}=1
$$

or

$$
x^{2}=\frac{4}{57}
$$

from which we get that

$$
x= \pm \frac{2}{\sqrt{57}}
$$

We therefore get the critical points

$$
\left(\frac{2}{\sqrt{57}},-\frac{7}{\sqrt{57}}\right) \quad \text { and } \quad\left(-\frac{2}{\sqrt{57}}, \frac{7}{\sqrt{57}}\right) .
$$

Evaluating f at each of these points we find that

$$
f\left(\frac{2}{\sqrt{57}},-\frac{7}{\sqrt{57}}\right)=\frac{8}{\sqrt{57}}+\frac{49}{\sqrt{57}}=\sqrt{57}
$$

and

$$
f\left(-\frac{2}{\sqrt{57}}, \frac{7}{\sqrt{57}}\right)=-\frac{8}{\sqrt{57}}-\frac{49}{\sqrt{57}}=-\sqrt{57}
$$

Thus, f is the largest at $\left(\frac{2}{\sqrt{57}},-\frac{7}{\sqrt{57}}\right)$ and the smallest at $\left(-\frac{2}{\sqrt{57}}, \frac{7}{\sqrt{57}}\right)$. The largest value of f on C is then $\sqrt{57}$, and its smallest value on C is $-\sqrt{57}$.
5. Let $C=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1, y \geqslant 0\right\}$; i.e., C is the upper unit semi-circle. C can be parametrized by

$$
\sigma(\tau)=\left(\tau, \sqrt{1-\tau^{2}}\right) \quad \text { for } \quad-1 \leqslant \tau \leqslant 1
$$

(a) Compute $s(t)$, the arclength along C from $(-1,0)$ to the point $\sigma(t)$, for $0 \leqslant t \leqslant 1$.

Solution: Compute $\sigma^{\prime}(\tau)=\left(1,-\frac{\tau}{\sqrt{1-\tau^{2}}}\right)$. for all $\tau \in(-1,1)$.
Then,

$$
\left\|\sigma^{\prime}(\tau)\right\|=\sqrt{1+\frac{\tau^{2}}{1-\tau^{2}}}=\frac{1}{\sqrt{1-\tau^{2}}}
$$

It then follows that

$$
s(t)=\int_{-1}^{t} \frac{1}{\sqrt{1-\tau^{2}}} \mathrm{~d} \tau \quad \text { for }-1 \leqslant t \leqslant 1
$$

(b) Compute $s^{\prime}(t)$ for $-1<t<t$ and sketch the graph of s as function of t.

Solution: By the Fundamental Theorem of Calculus,

$$
s^{\prime}(t)=\frac{1}{\sqrt{1-t^{2}}} \quad \text { for }-1<t<1
$$

Note then that $s^{\prime}(t)>0$ for all $t \in(-1,1)$ and therefore s is strictly increasing on $(-1,1)$.
Next, compute the derivative of $s^{\prime}(t)$ to get the second derivative of $s(t)$:

$$
s^{\prime \prime}(t)=\frac{t}{\left(1-t^{2}\right)^{3 / 2}} \quad \text { for }-1<t<1
$$

It then follows that $s^{\prime \prime}(t)<0$ for $-1<t<0$ and $s^{\prime \prime}(t)>0$ for $0<t<1$. Thus, the graph of $s=s(t)$ is concave down on $(-1,0)$ and concave up on $(0,1)$.
Finally, observe that $s(-1)=0, s(0)=\pi / 2$ (the arc-length along a quarter of the unit circle), and $s(1)=\pi$ (the arc-length along a semi-circle of unit radius). We can then sketch the graph of $s=s(t)$ as shown in Figure 3.
(c) Show that $\cos (\pi-s(t))=t$ for all $-1 \leqslant t \leqslant 1$, and deduce that

$$
\sin (s(t))=\sqrt{1-t^{2}} \quad \text { for all } \quad-1 \leqslant t \leqslant 1
$$

Figure 3: Sketch of $s=s(t)$

Solution: Figure 4 shows the upper unit semicircle and a point $\sigma(t)$ on it. Putting $\theta(t)=\pi-s(t)$, then $\theta(t)$ is the angle, in radians, that the ray from the origin to $\sigma(t)$ makes with the positive x-axis. It then follows that

$$
\cos (\theta(t))=t
$$

and

$$
\sin (\theta(t))=\sqrt{1-t^{2}}
$$

Since

$$
\sin (\theta(t))=\sin (\pi-s(t))=\sin (s(t)
$$

the result follows.

Figure 4: Sketch of Semi-circle
6. Let $\omega=2 x \mathrm{~d} x+y \mathrm{~d} y$ and $\eta=y d x-x \mathrm{~d} y$ denote differential 1-forms. Compute each of the following $\omega \wedge \mathrm{d} \eta, \eta \wedge \mathrm{d} \omega$ and $\mathrm{d}(\omega \wedge \eta)$.

Solution: Compute

$$
\begin{gathered}
\mathrm{d} \omega=\mathrm{d}(2 x \mathrm{~d} x+y \mathrm{~d} y)=2 \mathrm{~d} x \wedge \mathrm{~d} x+\mathrm{d} y \wedge \mathrm{~d} y=0 \\
\mathrm{~d} \eta=\mathrm{d}(y d x-x \quad \mathrm{~d} y)=\mathrm{d} y \wedge \mathrm{~d} x-\mathrm{d} x \wedge \mathrm{~d} y=-2 \mathrm{~d} x \wedge \mathrm{~d} y .
\end{gathered}
$$

Then
$\omega \wedge \mathrm{d} \eta=(2 x \mathrm{~d} x+y \mathrm{~d} y) \wedge(-2 \mathrm{~d} x \wedge \mathrm{~d} y)=-4 x \mathrm{~d} x \wedge \mathrm{~d} x \wedge \mathrm{~d} y-2 y \mathrm{~d} y \wedge \mathrm{~d} x \wedge \mathrm{~d} y=0$,
since $\mathrm{d} x \wedge \mathrm{~d} x=0$ and $\mathrm{d} y \wedge \mathrm{~d} x \wedge \mathrm{~d} y=-\mathrm{d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} y=0$, and

$$
\eta \wedge \mathrm{d} \omega=\eta \wedge 0=0 .
$$

Finally,

$$
\begin{aligned}
\omega \wedge \eta & =(2 x \mathrm{~d} x+y \mathrm{~d} y) \wedge(y d x-x \mathrm{~d} y) \\
& =2 x y \mathrm{~d} x \wedge \mathrm{~d} x-2 x^{2} \mathrm{~d} x \wedge \mathrm{~d} y+y^{2} \mathrm{~d} y \wedge \mathrm{~d} x-x y \mathrm{~d} y \wedge \mathrm{~d} y \\
& =-\left(2 x^{2}+y^{2}\right) \mathrm{d} x \wedge \mathrm{~d} y ;
\end{aligned}
$$

so that

$$
\mathrm{d}(\omega \wedge \eta)=-(4 x \mathrm{~d} x+2 y \mathrm{~d} y) \mathrm{d} x \wedge \mathrm{~d} y=0 .
$$

7. Let C denote the unit circle traversed in the counterclockwise direction. Evaluate the line integral $\int_{C} x^{3} \mathrm{~d} y-y^{3} \mathrm{~d} x$.

Solution: Observe that $\int_{C} x^{3} \mathrm{~d} y-y^{3} \mathrm{~d} x$ is the flux of the vector field $F(x, y)=x^{3} \widehat{i}+y^{3} \hat{j}$, so that, by the divergence form of the Fundamental Theorem of Calculus in \mathbb{R}^{2},

$$
\int_{C} x^{3} \mathrm{~d} y-y^{3} \mathrm{~d} x=\int_{D} \operatorname{div} F \mathrm{~d} x \mathrm{~d} y
$$

where D is the unit disc in \mathbb{R}^{2} centered at the origin, and

$$
\operatorname{div} F=3 x^{2}+3 y^{2}=3\left(x^{2}+y^{2}\right) .
$$

Using polar coordinates we then get that

$$
\begin{aligned}
\int_{C} x^{3} \mathrm{~d} y-y^{3} \mathrm{~d} x & =\int_{0}^{2 \pi} \int_{0}^{1} 3 r^{2} r \mathrm{~d} r \mathrm{~d} \theta \\
& =6 \pi \int_{0}^{1} r^{3} \mathrm{~d} r \\
& =\frac{3 \pi}{2}
\end{aligned}
$$

8. Let $F(x, y)=y \widehat{i}-x \widehat{j}$ and R be the square in the $x y$-plane with vertices (0,0), $(2,-1),(3,1)$ and $(1,2)$. Evaluate $\int_{\partial R} F \cdot n \mathrm{~d} s$.

Solution: Observe that the divergence of F is

$$
\operatorname{div} F=\frac{\partial}{\partial x}(y)+\frac{\partial}{\partial y}(-x)=0
$$

for all $(x, y) \in \mathbb{R}^{2}$, so that, by the divergence form of the Fundamental Theorem of Calculus in \mathbb{R}^{2},

$$
\int_{\partial R} F \cdot n \mathrm{~d} s=\int_{R} \operatorname{div} F \mathrm{~d} x \mathrm{~d} y=0 .
$$

