Review Problems for Final Exam

1. In this problem, x and y denote vectors in \mathbb{R}^{n}.
(a) Use the triangle inequality to derive the inequality

$$
|\|y\|-\|x\|| \leqslant\|y-x\| \quad \text { for all } x, y \in \mathbb{R}^{n}
$$

(b) Use the inequality derived in the previous part to show that the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $f(x)=\|x\|$, for all $x \in \mathbb{R}^{n}$, is continuous.
(c) Prove that the function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $g(x)=\sin (\|x\|)$, for all $x \in \mathbb{R}^{n}$, is continuous.
2. Define the scalar field $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $f(x)=\|x\|^{2}$ for all $x \in \mathbb{R}^{n}$.
(a) Show that f is differentiable on \mathbb{R}^{n} and compute the linear map

$$
D f(x): \mathbb{R}^{n} \rightarrow \mathbb{R} \quad \text { for all } x \in \mathbb{R}^{n}
$$

What is the gradient of f at x for all $x \in \mathbb{R}^{n}$?
(b) Let \widehat{u} denote a unit vector in \mathbb{R}^{n}. For a fixed vector v in \mathbb{R}^{n}, define $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(t)=\|v-t \widehat{u}\|^{2}$, for all $t \in \mathbb{R}$. Show that g is differentiable and compute $g^{\prime}(t)$ for all $t \in \mathbb{R}$.
(c) Let \widehat{u} be as in the previous part. For any $v \in \mathbb{R}^{n}$, give the point on the line spanned by \widehat{u} which is the closest to v. Justify your answer.
3. For points $P_{1}(1,4,7), P_{2}(7,1,4)$ and $P_{3}(4,7,1)$ in \mathbb{R}^{3}, define the oriented triangle $T=\left[P_{1}, P_{2}, P_{3}\right]$, and evaluate $\int_{T} \mathrm{~d} x \wedge \mathrm{~d} y$.
4. Let $\Phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote the map from the $u v$-plane to the $x y$-plane given by

$$
\Phi\binom{u}{v}=\binom{2 u}{v^{2}} \quad \text { for all } \quad\binom{u}{v} \in \mathbb{R}^{2}
$$

and let T be the oriented triangle $[(0,0),(1,0),(1,1)]$ in the $u v$-plane.
(a) Give the image, R, of the triangle T under the map Φ, and sketch it in the $x y$-plane.
(b) Show that Φ is differentiable and give a formula for its derivative at every point $\binom{u}{v}$ in \mathbb{R}^{2}.
5. Compute the arc length along the portion of the cycloid given by the parametric equations

$$
x=t-\sin t \quad \text { and } \quad y=1-\cos t, \quad \text { for } t \in \mathbb{R}
$$

from the point $(0,0)$ to the point $(2 \pi, 0)$.
6. Evaluate the double integral $\int_{R} e^{-x^{2}} \mathrm{~d} x \mathrm{~d} y$, where R is the region in the $x y$-plane sketched in Figure 1.

Figure 1: Sketch of Region R in Problem 6
7. Evaluate the line integral $\int_{\partial R} \omega$, where ω is the differential 1-form

$$
\omega=\left(x^{4}+y\right) \mathrm{d} x+\left(2 x-y^{4}\right) \mathrm{d} y
$$

R is the rectangular region

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \mid-1 \leqslant x \leqslant 3,-2 \leqslant y \leqslant 1\right\}
$$

and ∂R is traversed in the counterclockwise sense.
8. Let $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be differentiable and define

$$
S=g^{-1}(c)=\left\{(x, y, z) \in \mathbb{R}^{3} \mid g(x, y, z)=c\right\}
$$

for some constant c. Assume that $S \neq \emptyset$ and that $\nabla g(x, y, x) \neq \mathbf{0}$ for all $(x, y, z) \in S$. Let I be an open interval or real numbers and let $\sigma: I \rightarrow \mathbb{R}^{3}$ be a differentiable path satisfying $\sigma(t) \in S$ for all $t \in I$. Prove that $\nabla g(\sigma(t))$ is orthogonal to $\sigma^{\prime}(t)$ for all $t \in I$.

